Personalized E-news Recommendation System

Group name: Astraeas

Index Number Name
134006J Alwis E.V.K.
134012A Asanga M.W.L.
134028D Dandeniya D.
134040G Dissanayaka L.G.A.N.

Faculty of Information Technology
University of Moratuwa

July 2018

Personalized E-news Recommendation System

Group name: Astraeas

Index Number Name
134006J Alwis E.V.K.
134012A Asanga M.W.L.
134028D Dandeniya D.
134040G Dissanayaka L.G.A.N.

Dissertation submitted to the Faculty of Information Technology, University of
Moratuwa, Sri Lanka for the partial fulfillment of the requirements of the Honours
Degree of Bachelor of Science in Information Technology.

July 2018

Declaration

We declare that this thesis is our own work and has not been submitted in any form for

another degree or diploma at any university or other institution of tertiary education.

Information derived from the published or unpublished work of others has been

acknowledged in the text and a list of references is given.

Name of Student
Alwis E.V K.
Asanga M.W.L.

Dandeniya D.

Dissanayaka L.G.A.N.

Name of the Supervisor

Dr. (Mrs.) A.T.P. Silva

Signature of Student

Date: o

Signature of the Supervisor

Date: o

Acknowledgement

We would like to acknowledge and extend our sincere gratitude to the following people
who have made the completion of this project possible. We are thankful to Mr. P. M.
Karunarathne, dean of the Faculty of Information Technology for his enormous
encouragement. We are thankful to our supervisor Dr. (Mrs.) A.T.P. Silva for her
encouragement, much needed motivation, guidance and coordination as our project
supervisor. We are also grateful to Dr. Lochandaka Ranathunga, the head of the
Information Technology Department, Dr. Subha Fernando, the head of the
Computational Mathematics Department and Mrs. Sumudu Wijetunge, the head of the
Interdisciplinary Studies Department. Finally a warm thank you extends towards all
other academic staff for the help and inspiration they extended, all non-academic staff
members who helped us throughout this project, our faculty members, batch mates who

motivated and supported us and to our families and friends.

Abstract

Information overloading is one of the major problems exists in the e-news domain with
the vast amount of content added by thousands of e-news web portals daily. So it’s very
difficult to read all the news articles and find the relevant information since it takes lot
of time as well as human effort. Hence, the project aims to design and develop a
“Personalized E-news Recommendation System”. There are e-news recommendations
systems already developed by Google and Yahoo. But the major limitations of these
existing systems include that the e-news recommendations by these systems are not
personalized and they do not a summarized view of the e-news content. Our system
addresses these research gaps prevailing in the existing systems and provide
personalized news recommendations and a summarized view on the e-news content.
The system consists of four main modules namely e-news extraction and classification,
aggregation, summarization and recommendation. The system extracts e-news articles
from a pre-defined set of e-news sites and these articles are pre-processed using several
techniques. Then the extracted news items are classified in to different categories like
political, business, sports, technology, entertainment and other using an ensemble
classifier. Then those classified e-news articles from multiple sources are aggregated
in to different clusters where a cluster contains e-news articles about the same topic.
Then the summarization module generates a single summary representing the key
information of the news articles within a cluster. The system generates extractive
summaries for each cluster by extracting significant information from original
documents in the clusters themselves based on a hybrid model. Then the lexical,
syntactical and semantic redundancies are removed and the final summary is created
after arranging the final summary sentences in the proper coherent order. The
recommendation module gives personalized e-news recommendations for different
users of the system. The recommendation module also uses a hybrid recommendation
model using content based filtering which checks the user’s past click events,
collaborative filtering which recommends e-news articles by identifying similar type of
user groups based on the user profiles and Location aware personalization which
recommends e-news articles based on the user’s current location. We present the
personalized e-news recommendation system which reduces the user’s reading time and

effort to a great extent.

Contents

L@ 1 T2 1]) o 2
1. INTrOAUCHION cceeeeiuneeirecrneiseenseensnecssesssnecssncsssecssnssssesssnssssesssnssssssssassssessssssssssssassnn 2
1.0 INErOdUCHION .u.cecueieieeeineeniecsnnnseensnecsnecssessssesssncsssesssnsssasssseesssnsssssssassssasanne 2
1.1 Background & Motivation........ccceeccvsencssnncssnnncssnnecssssesssssesssssssssssesssssossnsecs 4
1.3 Problem in Brief........iiiinniinnensennnnensennsninnecnnecseissscssseessessssssssssssesses 5
1.4 A & ODjJECLIVES..cuuuriirvrriirsrinssnrcsssnncssnrcssnsncssssesssssesssssesssssesssssssssssessssssssssess 6
2 20 N 1 1 1 TN 6
1.4.2 ODJECTIVES.cuvrierrrricssaresssrressssncssssnessssnsssssssssssesssssessssssssssssssssssssssssssssssssssssses 6

1.5 CONCIUSION aucuueeernrecruiiinensnensnecsnenssansssecsssecssnssssesssessssesssnssssssssassssessassssassssasanse 6
L@ 1 T2 1]) ol 7
2. Literature ReVIEW......ucieeiseecsennsecnsncssnecsenssnenssecsssncssnssssesssessssesssnssssssssassssessaass 7
2.1 INErOAUCTION aecueeerueecsneiseecsnensnecsaensnesssnsssnesssesssnssssnsssassssesssnssssssssnssssessasssassss 7
2.2 Automatic e-News EXtraction......eceeeneecsenseccsensencsnensencsnensecsssecssesssncens 7
2.2.1 DOM Tree EXPlOrationceecceecccseicssnncsssnesssssesssssessssssssssossnssssassses 7
2.2.2 SCOTING BIOCKS ..cccievuriersuricssnnicssnncssnrcssnncssssncssssesssssessssssssssssssssssnssssassscs 8
2.2.3 Machine Learning.........cceecccseeccsssncsssncssssncssssesssssesssssessssssssssssssssssssscs 8
2.2.4 WIAPPELS cuuerrirsuricssnrecsssressssnesssssesssssossssssssssssssssssssssssssssessssssssssssssnssssssssss 9
2.2.5. RSS FEeAS ..cuuuenurrnuenrurrcnensnennsnensnecsunnssnesssnssssscssessssessssssssssssassssessassssssss 9

2.3 E-news classification approachceeeicvvrinisnnincsencssnrcssnressnncssssncssssecnes 9
2.3.1 Support Vector MAacChines........ccceevvereesnrcssanncssanicsssnesssssesssnsssssnosssssossnns 10
2.3.2 Naive Bayes Classifier......coccevvicissercsssnicssnncssnicssnnessssncssssnessssncssssscsanns 10
2.3.3 K- nearest- neighbour algorithm...........c.iicvveecisninssnncssnrcscnncsnns 11

2.4 E-NEWS AZBIegatiOn.....ccccceeccsserccssanicsssnessssnesssressssosssssssssssssssssssnsssssssssssnsess 11
2.4.1 Feature eXtraction......ueceeeesseecsenssnesssecsssecssnsssacsssessssesssssssassssassssessanss 11
2.4.1.1 Latent Dirichlet Allocation Model (LDA).....cccoecerecrrrunreccscaseecssnes 11
2.4.2.2 DOC2VEC MOdel..ucuueecuennneecsnensnnnsnensnnssnenssncsssesssnssssesssassssessanssssenes 12
2.4.2.3 K-means CluStering.......ccuveeeecvercssricssnnncssanccsssnessssnessssssssssosssssssansecs 14

2.4.2.4 Affinity propagation..........ceeccecseecsseicssnnccsssnessssnessssessssrossssssssssecs 14
2.5 Intelligent e-news SUMMATrIZAtIONceeerverecrsnrisssnrcsssrcsssnessssncssssncssssscsansees 16

2.5.1 Extractive text SUIMMATIZAtION. ..cceeeeeeeeireereeeeeeneeeesseccsereessssssssscsssssssseses 16

... 17
2.5.1.2 Text summarization with Artificial Neural Networks................. 17
2.4.1.3 K-means clustering based text summarization...........cceeeeerueecuneene 18

2.5.2 Abstractive text SUMMATIZAtION.....cccereerrercsensseenseeessnecsansssaesssecsssecsanes 19
2.5.2.1 Rich semantic graph reduction techniquecccccevueeeveeruernnnee. 19

2.6 E-news Recommendation........ueeeeineecsensseensenssnecsessseecssecsssecssnsssscsssecnne 20
2.6.1 NeWS RANKING....ccccouriirvriisrnrinssninissnncssnncssnnisssssssssssesssssesssssessssssssssssssnss 22
2.6.2 User-based Collaborative Filtering Algorithmccccceeecercrcneennnns 23
2.6.2.1 Improved Pearson Correlation Coefficient Formula................... 23
2.6.2.2 User-Based Collaborative Filtering Algorithmcccceeeuueeee. 24

2.6.3 Item-based Collaborative filtering algorithmccceecerevvercrcnrcnns 25

2.6 SUINIMATY couevrervrrcssnncsssrncssssecssssesssssesssssesssssesssssssssssossssssssssssssssssssssssssssssssnssss 27
@] 1 T2 1]) i RN 28
3. Technology AdOPLedcceieeveiiivnicssnicssnnicssnnisssnnesssssesssnessssnsssssssssssssssssssanss 28
3.1 INLrOAUCTION a.ceueerreeeceenirecseensnncsnenssnecssessnesssesssnssssesssnssssesssnssssesssnssssssssasenne 28
3.2 Programming LanguUAGeS.........cccevueeesercssnrcssaricsssnesssssesssssesssssssssssosnssosansees 28
3.3 Development TOOIScceveeicncnriiisnnciisnicssnncssnnicssnnecssssssssssesssssssssssesssssssansses 28
3.4 Natural Language Processing ToolKkit (NLTK)c.cccceeverievvnrcrcnrcscnercscnnnes 29
3.5 Application Lifecycle Management (ALM)cccvveicrvericscnncscnncscnercssnnnes 29
3.2.5 Version controlling SYStEIMSccecveeersercssaricssanecsssresssssessassosssssessssssensees 29
R T 10111111 o R 30
CRAPLET 4 a...oeeeriinrriniiinsnnicssnticssnnicsssnesssssesssssesssnes 31
4. OUr APPIrOACh....ccaeiiiiiiiiisiicisticssnticssnsicssssicssssesssssssssssesssssssssssossssssssssssssssssssnss 31

Vi

4.1 INLFOUUCTION «vveeeeereeereeeeereeeeereeeseeeeerersssnssssssssse 31

T 200N 1] 1) Q1T 1] | R 31
4.3 E-news extraction Phase........ceeiciviccssnninssnncssssncssssncsssnessssncsssssssssssssassees 31
4.3.1 Inputs into the e-news extraction phaseccceevereevcercrcercrcnrcsnnns 31
4.3.2 Output by the e-news extraction phasecccceeeeereevcnrcscercssnrcsanns 32
4.4 Classification MOdUIecuueeeueiveiisnensseeisensseensensseensecsssecsanssssesssecsnne 32
4.4.1 Inputs into the classification module...........cccceeevverievvercrcercrcnrcnnnns 33
4.4.2 Process of the classification module...........ccuvueevvueesenssnensecssnecnnnes 33
4.4.2.1 Pre-ProcCessSiN@.......ecccceccccssrcssssncssssncssssssssssesssssssssssesssssosssssssssssssssess 33
4.4.2.2 Feature exXtractioNu.......cceeenseecsensseecsaenseccssensnssssesssassssessanssssenes 33
4.4.4.3 Training each classifiercoviiiiveicisriisveninssencnsnrcssnressnercssnenes 34
4.4.4.4 Building the ensemble classifiercccceevvericvverccscercsiercscnercsnnnes 34
4.4.3 Output by the classification modulecccoceveevvurievvercriercssercsanns 34
4.5 Aggregation MOAUIEuueeeeeriivvnriissrinssnrisssnncssssresssressssnossssscsssssssansees 34
4.5.1 Inputs into the Aggregation module............coeeeevrecrcnrccssercsssercscnnrcsnns 35
4.5.2 Processing of Aggregation moduleccovvueiervrecsvnricscnrcssnrcssnnncsnns 35
4.5.2.1 PreproCesSing.....cccccceeserecsssrcssnncssasecssssesssssessssssssssssssssssssssossssssssssss 36
4.5.2.2 Feature EXtractioneceeeeeneennennseenseessnensessssessecssseesssssssens 36
4.5.2.3 CIUSTETING .ceeeerrrirsrrresssrressssncsssncssssecssssesssssssssssssssssssssssssssssosssssssnssss 36
4.5.3 Output of Aggregation Module............cccoverevvricssrecssnncsssnncsssressnsrcsnns 36
4.6 Summarization MOAUIeueeeueevseiirnensseensenssnensensseensecsssecsanssssesssecnne 36
4.6.1 Inputs into the summarization moduleccceevureevercrsercrcnrcsanns 37
4.6.2 Processing of the summarization module.............ccceecvrereuercrcuercnanns 37
4.6.2.1 Pre-processing Phase........ccoeiciceicssnnicssnnccsssnesssssesssnesssssosssssssansecs 38
4.6.2.2 Document processing Phasecccecceeevceeccssnnccssnncssssnessnsressssncsnsees 38
4.6.2.2.1 Graph based approach...........eecnvcrrcsssercssercssnencssssncssnsees 38
4.6.2.2.2 Feature extraction based approach..............ccocerevvercrcnrcsnne 38

Vi

4.6.2.3 Sentence SCOring PRASE......ccovercrcricssricssanissssnessssnesssnessssresssssossssecs 39

4.6.2.4 Post processing Phase........ccoeiceceicssnnicssnnccsssnessssncssssessssnesssssosssees 39
4.6.3 Output by the summarization moduleccceeevreeverersercscnrcsenns 40
4.7 Recommendation PRASEcceeevveeicrserinssnrisssnncssssrcsssnessssncssssncssssscsassees 40
4.8 SUIMNIMATY cocvvrierrrcssnncssannossssncssssesssssesssssesssssesssssssssssosssssssssssossssssssssssssssssssssses 41
L@ 1 T2 1]) RN 42
5. Analysis and DeSi@Icccuverierveriissnnesssnnessnicssnncsssnecssssesssssesssssesssssssssssssssssssassess 42
5.1 INErOAUCTION accueeereeesenisnensnecsnensnecsaesssnessseessaesssessssssssessssssssassssessansssassssassnns 42
5.2 High level design and architeCture..........ccoeeicvverenssercscnrcssnncssnnrcssnsscsnsees 42
5.4 e-New Extraction and Classification DeSignccccceeecercrvercscnrcscnercsneces 44
5.4.1 E-news ExXtraction Level........iineinsecsinnseensenssnecsenssnccssecsssecaees 45
5.4.2 Pre-processing Level......iiiiinnviicnsnicnsnicssnicsssnessssncsssnessssnessssscsanes 46
5.4.2.2 Text TOKENIZAtION.....ccueereeiruensencsuensnnnsnensensssenssnesssesssncsssesssnssssenns 46
5.4.2.3 Stop Word Removal..........cciieiveicscnncssnnccssnnisssnncssssncssssnessssscsnsees 47
5.4.2.4 Word StEMMING......cccvveerrrrresssrncssrncsssrecsssnssssssessssesssssosssssosssssssssssss 47
5.4.2.5 LemmatiZationccceeerueeseecsuenssnecsaenssnsssaessncsssesssnssssesssassssessaassssenss 47
5.4.2 e-News Classification Level.......eineeneecsinnsnensnecnseecsenssncnseecssnecaens 47
5.4.2.1 Feature EXtractionceeieenneennsennsnensenssnensessssesssncsssesssnsssseens 48
5.4.2.2 SVM uuucuiiiiirinnisinsencssisnsssisssissssssesssess 48
5.4.2.3 Random Forest Algorithm..........ccccceevvuricrvenicisnrcsssnrcscnrcssnercssnnnes 48
5.4.2.4 Multinomial Naive Bayes.......cccoevererrrrcssnccssnnccssnncsssncssnsncssssncssnsnes 49
5.4.2.5 Ensemble Classificationcoeecveeeseicsuensecssnensncssnensenccsnecsansssneens 49

5.5 E- news Aggregation Module..........cuceevvurinvverinssnrcnssnrcscnrcssnnicssnnncssssscsnsees 51
5.5.1 PreprocCesSing.......cceeiccceccsssrccsssncssssnsssssscsssssssssssssssssssssesssssssssssossssssssnss 52
5.5.2 TT-Idf Features eXtraction........ccoceeeseecsecssrecsannssnesssecsssecsansssacsssassssessaess 52

viii

5.6 E-news summarization MOAUILEeeeeeeeeeeeeeereeennneesseseeereeeesssessssscssessssssssssone 55

5.6.1 Pre-proCessingceeccececcssseccsssncssssncssssncssssnsssssssssssesssssessssssssssssssssssssnss 56
5.6.2 SENLENCE SCOTING c..cuuvrrerrrricrsaresssaressssncssasncssasnssssssssssesssssessssssssssssssssssssnss 57
5.6.2.1 TextRank algorithm..........cceievvriiivricisnrccssnnicssnncsssnncssnsncssssncsnnnes 57
5.6.2.1.1 Sentence similarity graphceecvcrccisnncnisnncssnrescercscnnncnes 57
5.6.2.1.2 Bag-of-words model.........ccceevveicrvninssnncnssnncsssnncssnnessnencssssncnes 58
5.6.2.1.3 Cosine SIMIlATity ..c.ccceeeverercricssnicssnnicssnncsssnnesssnesssnessssrcsssscnes 58
5.6.2.1.4 Jaccard SIMIlarityccceeveecivrecisnncnssnncsssnncssssncssnnncssssncssssnenes 59
5.6.2.1.5 PageRank algorithm........c..cccvvericivricsvnncnssnncnsnrcssnnrcssnencsssencnes 59
5.6.2.2 Feature extraction based approachccoeeeevvercvcercscercsnnnes 60
5.6.2.2.1 Normalization SChemecceeverreecseenseecsnenssnenseecssnecsanessnnens 61
5.6.2.2.2 Weighted average SCOT€.......cceveeecrcericssnrcssssresssressssresssssssssscses 62

5.6.3 Summary sentences selection for summary generationcceeeuueee 62
5.6.4 POSt PIrOCESSING ..ccecrvricrsericssnnesssnncssssncssanncssssnsssssssssssessssesssssesssssssssssssnss 63
5.6.4.1 Redundancy removalceieiveicicnicssnnicsssnessssncsssncssssnessssscsnsees 63
5.6.6.1.1 Lexical sSimilaritycocceevveeeivricivninssnncsssnncssnncssnncssssncssssncnes 63
5.6.6.1.2 Syntactic SIMIlATitycccceerveiervricssnicssnncsssnncsssrcsssressssrcssssscnes 64
5.6.6.1.3 Semantic SIMIlATityccccceerveiersnicssnicssnnisssnncssssrcsssnessssrcssssncnes 64
5.6.6.1.4 WordNet based semantic similarity......ccccceeeverercvercrcercscnnnenns 64
5.6.6.1.5 Word2vec based semantic SIMilaritycccceeverercercrcercscnnnenns 65
5.6.4.2 Sentence Ordering.........cceeeccvercssrecssnnncssanccsssnessssesssssssssssossssssssssscs 66

5.7 Recommendation MOdule.........cueeeeeeneeisnensseecsenssnecsenssnecssncsssecsanssacsssasnne 68
5.7.1 Location aware personalization...........cccecceeessueecssnnccssnncsssncssssrcssnsncsanns 69
5.8 SUIMMATY couuviiiruiiiniinessnncssnicssnnicsssnisssssessnssss 70
CRAPLET 6 ccceneericnnrininninsneicssnricsssnicsssnesssssssssssesssnss 71
6. IMPlementation........ccueeienvricnseninssnnensssncssnncsssncssssesssssessssssssssessssssssssssssssssassess 71
6.1 INTrodUCHION ..uuuceeeiiueiniecsneiinensnecstecsnissaesssecsssecssnssssssssessssesssnssssssssassssessanss 71

6.2 Implementation of Extraction module.............coueivveenreensnecserssennseecsnecnnes 71

6.3 Implementation of Classification module...........cccceeeverivvcercnsercrsercscnnncnns 77
6.4 Implementation of the e-news Aggregation Moduleccccceervuercrcnennne 82
6.4.1 PreprocCesSing.......cceeccrseecsssnccsssncssssncssssscssssssssssssssssesssssesssssossssssssssssssnss 82
6.4.2 Features EXtractionceeeeecneinnecnsecnsnecsennsnenssecssnecsessssssssessssecsaees 82
0.4.3 CIUSEEIING.....ceiervuriersrricrsnicssanessssnessssnsssssscssssnssssssssssesssssessssssssssssssssssssnss 83
6.5 Implementation of the summarization module............ccceeverercvrcrcercscnnnenns 84

6.5.1 Implementation of the graph based approach for sentence scoring .84

6.5.2 Implementation of the feature based approach for sentence scoring86

6.5.5 Redundancy removal...........ccoeiecnveicsssencssnncssnncsssssesssssessssssssssesssssssanss 92
6.5.5.1 Lexical SIMIlATity ...cccoveeerveieissencssnncssnicssnnicssnnessssnesssnsssssrosssssssnsees 93
6.5.5.2 Syntactic Similarity........ccicnvveicssnncssnicssnisssnncssssnesssnessssncssssnes 94
6.5.5.2 Semantic Similarity.......ceccivvicivseicisninnsnicssnesssnncssssnesssnessssncssssees 94

6.5.5.2.1 Implementation of the wordNet based semantic similarity..95

6.5.5.2.1 Implementation of the word2vec based semantic similarity 95

6.5.6 Sentence Ordering.......c.eiiciveeecsseresssnncsssncssanncssssssssssessssesssssssssssossssssanss 97

6.6 Implementation of the recommendation module...........ccccceeevuerercuercrcnencnns 98
6.6.1 Popularity Model.......ccuiieveriiivnniissnicssnncssnncssnnscsssnessssnesssnssssssesssssosanns 98
6.6.2 Content-based Filtering Model............cccuveievvricssrenssnrcnssnncssnrcssnnncsnns 99
6.6.3 Collaborative Filtering Model..........ccccceeevuricrvericssrncssnrcssnrcscnnscsnns 103

6.6.4 Hybrid Recommender Modelcoeicevuiiesvnricssnnicssnncssnncscnncscnnnenes 104

TRZANT 111101121 o) T 106
L@ 1 T2 1]) i N 107
7. EVAIUALION ccccueirneiineenincsnininensnecsnecsnsssaesssecsssecssnssssssssesssssssssssssssssassssessassssassss 107
7.1 INErOAUCTION accuveeereecsneisruenseeessnecsansssansssncsssecsanssssesssnssssecssnsssassssassssessassnaesss 107
7.2 Evaluation of classification moduleccuvuenrueenseecsueniseenseecsseecsnensnenne 107
72,1 DALA SeL..nuueineeiiriieenseenssencssnessensssenssesssesssnssssnssssssssssssassssesssssssassssasnns 107

7.2.2 EVAIUALION IMALEICES .eevreeeenreeereeeeereerenreesssoseereessssssssssssssessssssssssosssssssssses 107

7.3 Evaluation of the aggregation module............ccceeevvererserercnrcssnrcssanrcsnns 111
7.3.1 DALA SCL.ucccuuerireiruenseenseensencssnnsnesssesssnesssesssnesssessssssssssssassssesssnssssssssassnns 112

7.3.2 Evaluation results for different feature modelsccceeeuueeuuennee 113

7.3.3 Evaluation results for different clustering algorithms 113

7.4 Evaluation of the summarization moduleccuveeevuervruensecnseecsnercnnnnne 114
7.4.2 Evaluation of the individual sentence scoring approaches 115

7.4.3 Evaluation of the similarity measures........ccccceeeverecvcercnsercscercscnenenes 115

7.4.4 Evaluation of the normalization schemesc.ccceevverievercscercncnnnenns 116

7.4.5 Evaluation of the system generated summariesccceeeeeeeuercrcnnnenes 117

7.5 Evaluation of the recommendation modulecoueevuerivuenseesseecsnencnnnnne 118
7.5.1 DALA SCLuuccnuuerieeireenseensneisencsunnsnesssesssnesssesssnssssnssssssssssssassssesssssssassssassnne 119

7.5.2 Evaluation MAatriX ...cecceecnneeneensnennseecsnenssecssseesssssssesssnssssesssssssasessasnne 119

7T SUINIMATY couverervricssnncssarncssarecssssesssssssssssesssssosssssessssssssssssssssssssssssssssssssssssssnss 121

@] 1 T2 1]) 2N 121
8. Conclusion & Further WorkKeeiecnneecninnsecnsnecnsnecsensssenssecsssecssessssens 121
8.1 INErOodUCTION ccueeerureirueiineiseeessnecsanissnncssecsssecssnssssesssnssssnessnsssansssassssessassssenss 121

8.2 Achievement of ODJECTIVES.....uceervriervricssnricssnncsssnrcsssressnsnessnsrcssssrcssssscsanns 122

8.3 Problems encouNtered........ceecueiiseeisensseecsenssnensseesssecssnsssansssessssecsassssaenss 122

8.4 E-news extraction and classification module.............coueevueeueenuecnnenennnne 123

8.5 E-news aggregation Module...........coeeieivericscnnisssnnisssncssnncsssncssssncssssscsanns 123

8.6 E-news summarization modulecoeeenerinueiseensnecsennsnensenssnecsnensnens 124

8.7 E-news recommendation Moduleoeeenueiisenseensnecsnnssncnseeesseeesnessnneens 125

8.8 FUrther WorkK......eiieennecnieniinnnnnsnennnnecsnnsssensnecsssecsnssssesssessssesssessssens 125

8.9 SUMMATY ceuurrivniiiisniiisinricssnnicssnnicsssrissssnesssssesssssess 126
REfEIENCES . .ccuueennriiniiiriitiniticitinitestnnstesnessticssessessssesssessssesssassssesssessssssssassssesssase 126
APPENAIX A c.oueirnniiineinsnecsnnnsaeiseesssncsnssssesssassssessssssssssssasssssssssssssssssassssassssssssssssassnss 131

Xi

Individual’s Contribution to the Project

xii

List of Figures

Figure 2.1: Neural Network Model of Doc2vec Model...........ccouereuensuecseecsnencnneene 13
Figure 2.2: Content-based Recommendation System.........ccccceeruerssuecsuecsseecsaensancene 21
Figure 2.3 : News ranking with user profilesccceveeevvrecicnrinscercscnrcscnercssnnnenes 23
Figure 4.1: E-News EXtraction......ccceecniinsenssecssnecsenssnensecsssecssessssesssessssecssssssacens 31
Figure 4.2: E-news Classificationccoiiineensecnsecsenssnensecssnecsenssacsssecsssecssesssaeens 32
Figure 4.3: Abstract view of the e-news aggregation component..........cccceeecuerenee 35
Figure 4.4: Abstract view of the e-news summarizer componentccceeeeuneee 37
Figure 4.5: Abstract view of the recommender component.............ceceeeseeeseersncene 40
Figure 5.1: High level system architectureccocceeevveeecsvericscnrinsnrcssnrcssnencssnssenes 43
Figure 5.2: E-news Extraction and Classification Module Design...........ccccceueee.. 44
Figure 5.3: e-news Articles EXtraction........ceecieecneniseensecssnecsenssncnsnecsssecssesssncens 45
Figure 5.4: RSS feed of The Guardian webSite.cucuveeirecnsrecserssnenseecsseecsaenssneens 46
Figure 5.5: Ensemble ClasSifiercciiuiinnensecnsecsennsensecssnecsessssesssecsssecssessssens 49
Figure 5.6: an E-NeWs iteM.......couiineinieciinnscnsecnsnecsenssnensecsssecssessssesssessssecssssssaesss 50
Figure 5.7: Design of the e-news aggregation component..........ccccceeecercscnercscnerenes 51
Figure 5.8: Design of the e-news summarization componentceceeeveeernercnneene 55
Figure 5.9: Semantic similarities between words based on word2vec model....... 66
Figure 5.10 Design of the recommendation moduleccoueeruerevuensueciseecsensnnene 68
Figure 6.1: Arrangement of the JSON ODjectcuuirveenrecnseenserssnenseecssnecsaesssncens 72
Figure 6.2: Creation of the data object.......uceevveecsirnreinsennsnecsensseensnecssnecsaensneen 72
Figure 6.3: Open JSON file With NeWs SItesccoveererirensecssrecsenssnenseecssnecsaesssncens 73
Figure 6.4: If RSS Feed is available, use FeedPaserccoueevervreensecsseecsnencnneene 73
Figure 6.5: Check Published Datecccvvuerreenseecsinssnensenssnensnenssnenseecsssecssesssncens 74
Figure 6.6: Article Downloading and Parsing...........iievceicvcninscnncscnncssnnncssnnnenes 74
Figure 6.7: Get Data using RSS Feedsoiinnenninnsensecnsnecsenssncnsecssnecssensncens 75
Figure 6.8: Use URLS t0 SCrape data........coeereesseecsenssnnnsecssnecsnsssaecssecssecssssssacens 75
Figure 6.9: Scrape Data using URLS.....cccivuiiiecisecsenssnensecssnecsenssaccssecsssecssesssacens 75
Figure 6.10: Use URLS to scrape data..........coeeeiveecsenssnensecssnecssesssaecssecsssecssssssacens 76
Figure 6.11: Store data gathered from URLSs to scrape data...........cccceevueeruercnnnee 76
Figure 6.12: Save Data into JSON fileccuueireeisiecsenssnensenssnensenssnensnecsssecssesssneens 77
Figure 6.13: e-nNews Pre-processing.........cceicicsercssricssnnecsssnccsssnessssesssssssssssssssscses 77

Figure 6.14:
Figure 6.15:
Figure 6.16:
Figure 6.17:
Figure 6.18:
Figure 6.19:
Figure 6.20:
Figure 6.21:
Figure 6.22:
Figure 6.23:
Figure 6.24:
Figure 6.25:
Figure 6.26:
Figure 6.27:
Figure 6.28:
Figure 6.29:
Figure 6.30:
Figure 6.31:
Figure 6.32:
Figure 6.33:
Figure 6.34:
Figure 6.35:
Figure 6.36:
Figure 6.37:

Figure 6.38:
Figure 6.39:
Figure 6.40:
Figure 6.41:
Figure 6.42:
Figure 6.43:
Figure 6.44:
Figure 6.45:
Figure 6.46:

e-news articles lemmatizationcoeeceeenseensensseensnennsnecsnenssnesseecnnne 77
Read BBC data Sef....uciieieenieecsnenssencsnensensssecsnssssesssnssssesssasssassssasanne 78
TF-IDF Vector Creation........eeeeineecsecsseecssensssesssecsssecssessassssacnne 78
Split Data set Into Training and Testing Datasetscceceerueeruecnnee 78
Random Forest Classifiercuiiennennsencsenseccsnensecssnecsenssnessnecnne 78
Save Trained Random Forest Classifiercccceeceerueensvecsuensseensnnnnne 79
Multinomial Naiv30e Bayes Classifier.......c.cccceevericceriscnrcssercscnercsnns 79
Support Vector Machine ClasSifierccoeceevceicsverccssercscnrcscnnncssnnnes 79
Hard Voting Method..........ccuiieiiicniniissnicssnnisssnnissssncsssnossssnessssscsenns 80
Weighted Average Method..........eeeeeeicivnrinssnrcscnncssnncssnrcsssencssssscnes 80
Predict Class Labelseeernuenninnsnenseissnensecnsnensecsssecsesssacsssecnne 81
Ensemble classifier considering weight parametercccecuereunes 81
Stop words eliminationcoeeeivveecnssencssnicssnnicsssncssssnesssnessssnosssnes 82
Porter’s stemming algorithmceeievveiiciverinicnninssnncssnrcssnnrcssnnncsnns 82
LDA MOdeEl...uuccieiiiiiininnnicsnensninsnensnncssenssnssssesssnssssssssassssesssasssassssasasse 82
Doc2vec Modeluucneeeniennuiinninsnenniinsnenneenneennessniisnesseessessessaens 83
TH-Adf MOdeluuueoneiniiiiiiiinniiientineeceectenneseensesssessessaesssesnee 83
k-means clustering algorithm.........c.ccovvieevvrinisnninssnncsssnrcssnrcssnnnesnns 83
Affinity propagation algorithm............ccovveeievverisisnrcncercssercssnercssnnnenes 83
102 33T OF: WA 1 71 g 111111 N 84
Generation of SeNtence VECtOrS.....cueineeireesseecseenssnessuecssnecssessansssncnne 85
Cosine similarity calculationccoeiciveicivninssnnccssencssnncssnnncssnenes 85
Generation of sentence similarity matriX.....ccoccceevveecesvercscnrcscnercssnnnes 86

Application of the pageRank algorithm for the sentence similarity

... 86
Calculation of the sentence position SCOTe........ccceevereesverescercssnnrcssnenes 87
Calculation of the sentence length SCoreceeeevveeiescerencercncnrcssnnnes 87
Calculation of the title SCOre.....uuuenuerreeiruenreensnenieenseensnecsnensseesseecnne 88
Calculation of the NOUN SCOTE......ccuueireeirueiiseensuenseensuenssnecssenssaesssecnne 88
Calculation of the numerical literal score.........ccceeeeevvvrercnrcrcnercscnnnes 89
Calculation of the verb SCore.......iineeceeeiseensnensnenseensnecsnenssnesseecnnne 89
Calculation of the proper NOUN SCOTecccceeervureercrrccseresssressssrosnsnes 89
Calculation of the key word frequenciesccceeeeeeescercscnnrcscnercssnnnes 90
Calculation of the weighted average SCore.........coveeevverercnrescnercscnnnes 91

Xiv

Figure 6.47: Aggregated individual level of summary generationcceueeeueen.. 92
Figure 6.48: Jaccard similarity measurement for word tokens...........cceeeeeruercuncee 93
Figure 6.49: Jaccard similarity measurement for word stemsc.cceevveeruercnncee 93
Figure 6.50: Jaccard similarity measurement for word lemma............ccccerueeeneene. 93
Figure 6.51: Calculation of the dice coefficient..........coeeveevruecsersseensecsseecsnensnnnene 94
Figure 6.52: WordNet based semantic similarity measurementccccceeruercuneee 95
Figure 6.53: Word2vec based semantic similarity measurement.........c..cceeuereuaeese 96
Figure 6.54: Semantic redundancy eliminationeceeeieecnennsensecsseecsnensneene 97
Figure 6.55: Sentence ordering using sequence matchingcccccceeecercrcercscunnenes 98
Figure 6.56: Identification of most popular items..........ccceeeeercericscnrcscercscnercssnnnenes 99
Figure 6.57: Popularity model based recommendation...........ccccceevueesuecsseecsnersnncene 929
Figure 6.58: Modelling the vector space model..........ccccecvericrcerinsvnrcscercscnercsnnnes 100
Figure 6.59: Building user pProfilesccueieiveicssnncssnnccssnncnssnncssnncssencssssscsnsnes 101
Figure 6.60: Content based recommendationo.coeeeneecsseecsnecsenssnecsencssaecanes 102
Figure 6.61: Recommendation of items based on content based filtering 102
Figure 6.62: Collaborative filtering recommendercoeceeereecsueccsnenseeccseecnnes 104
Figure 6.63: Hybrid recommender modelccoueenernruensecssnensenssnensenccnecnnes 105
Figure 6.64: Recommendations of the hybrid model............ccovueevuernuensueccneennen 105
Figure 6.65: Ul interface of the recommended News..........ccceeeeeeseecseecseeccnecnnes 106
Figure 7.1: Performance of different recommendation methods........................ 120

Xv

List of Tables

Table 7.1: Confusion Matrix of Support Vector Machine 108
Table 7.2: Confusion Matrix of Random Forest Algorithm 108
Table 7.3: Confusion Matrix of Multinomial Naive Bayes 109
Table 7.4: Confusion Matrix of the Ensemble Classifier 109
Table 7.5: SVM with different Kernel Functions 110
Table 7.6: Accuracy of classifiers 110
Table 7.7: Precision, Recall, F1 values for each classifiers 111
Table 7.8: Evaluation of different feature models for clustering 113
Table 7.9: Evaluation results of different clustering algorithms 114

Table 7.10: ROUGE-1 evaluation results for individual sentence scoring
approaches 115
Table 7.11: Evaluation of similarity measures for the TextRank algorithm 116

Table 7.12: Evaluation of normalization schemes in the feature based approach

117
Table 7.13: Evaluation of the final system generated summaries 118
Table 7.14: Evaluation results of different recommendation methods 120

Chapter 1

1. Introduction

1.0 Introduction

With the advent of the information age, people are more towards on browsing online
news sites rather than traditional ways of news consumption via printed media like
newspapers. Today online news reading has become very popular since web provides
access to news articles from millions of sources all around the world. These e-news web
sites are generating thousands of news per day. Therefore, a critical problem with news
service websites is that the volume of articles can be overwhelming to the users. This
problem refers to the “information overloading”. So, managing this kind of vast
number of news articles has become a challenging task. Therefore, providing a news
articles categorization engine is a timely requirement [1]. This may classify diverse
news articles in to different classes like political news, financial news, sports news,
entertainment news, technological news etc. Then it will be very convenient for the

users to access similar kind of news in a single place [2].

But simply classifying the news articles is not sufficient because there is a huge number
of news articles describing about the same news in diverse sources. So, bringing all the
news articles which describe about the same news into one place is also really
important. If the news articles about the same news from different sources can be
integrated together then they can be accessed from a single place which is very
convenient for the users. Aggregating of these news articles based on similarity of the
news content will give a better user experience [3]. Even today there are so many news
aggregation web sites have been developed like google news, yahoo news to collect
news from various sources and to provide an aggregate view of news from around the
world [4]. Although there are available news aggregation systems this has become a
hot research topic because researchers are looking towards most accurate news
aggregation systems. News aggregators capably handle the large amount of news that
is published nowadays. By using aggregators consumers can reduce search costs and

terminate their search for content that they would seek.

But still people need to go through at least a certain number of news articles one by one
to get to know more details about a particular news item. That is because different news
sites describe about the same news in different ways, different sites reveal different
perspectives on the same topic and some news sites provide some additional
information about particular news items [5]. People may have no much time to read
everything and it’s difficult to make critical decisions based on whatever information is
available. So, if these news web sites can provide a summarized view of the aggregated
news items with most important details of a particular news item then the users can save
lot of time. Therefore, it has gained much more attention towards news summarization.
The summarization involves distilling the most important information from a source
(or sources) to produce an abridged version for a particular task [6]. These systems
focus on identifying and presenting important, common information in news. Then it
helps users gain a broad and diverse understanding about the news items by presenting

various perspectives on the same news topic.

Another key challenge of news websites is to help users find the articles that they are
interesting to read. So, the requirement for a news recommendation engine has gained
a big boom. Lot of theories also have been identified and introduced in this field
acquiring the attention of potential researches to research more to provide the users with
news articles that are interesting for them to read. People hope to obtain their interested
news fast and get pleasant reading experience. Under these circumstances the need of
a personalized news recommendation system appears which better meets the user’s
individual needs of news. For users who are logged in and have explicitly enabled web
history, the recommendation system builds profiles of users’ news interests based on
their past click behavior [7]. Through the analysis of user’s interests, we can analyze
the personalized news recommendation for different people. The challenge here is we
need to analyze the user’s interests in a time tagged manner as the user’s interests may
also change over the time [8]. So, in order to address all the above-mentioned issues,
we are going to develop an automated and intelligent system of classified, aggregated,

summarized and personalized news recommendations.

1.1 Background & Motivation

With the popularity of the internet, the information content available and produced daily
on different e-news portals has increased at an enormous rate. These news sites are
generating thousands of news from political news, financial news, sports news etc. even
in a single second [2]. But most of the people are not interested at reading all these
types of news where some people may interested at political news, business people may
want to read financial news and young generation may want to read sports news or
entertainment news likewise. But if all of the news items are jumbled together then it
will be very difficult to find the news items they want to read. It will consume lot of
time as well as a lot of human effort. Instead if the news items can be classified into
different groups of political, financial, sports, and entertainment separately then people
will feel it very easy to find the type of news categories they want to read. So it was the

main intuition behind having a classified e-news system.

Although the news items are categorized into classes still there will be large number of
news articles about the same topic generated by diverse sources. So in order to have a
proper understanding about the news people need to visit those e-news sites one by one
and search for the particular news which also consumes lot of time [4]. So instead if the
system can aggregate all the news articles which are describing about the same news
from different sources into a single place the problem can be solved which was the

insight for an e-news clustering system.

Within a single cluster of news articles a large number of news articles about a
particular topic will be available. So the readers have to go through each and every
news article to get a clear and detailed understanding about that particular news. So the
problem will be the same which is the wastage of time and man power. With this main
intuition we are going to propose a system which can summarize all the news articles
describing about a same news and present the most important details about that news
to the reader [5]. They the readers can get a proper understanding about the news items

by reading those summaries which does not take that much of time and effort.

People are also interested in obtaining their preferred types of news items fast and
thereby having a pleasant reading experience. Therefore, if the system can provide

personalized news recommendations for the users then it will enhance the user

4

friendliness of the system as well. So the main intuition and motivation behind a news

recommendation system was to enhance the user experience.

1.3 Problem in Brief

The information overloading is one of the serious problems nowadays since
information is generating in a rapid rate with the advent of internet. When it comes to
the e-news context this problem remains the same. There is enormous volume of news
articles from numerous portals on the web [2]. These contain gigantic amount of news
articles from all around the world added daily at a rate of hundreds, even thousands or
more per hour. This prohibits a difficulty for the access to the right information and

users must spend a lot of time manually sifting out useful or relevant information.

With the busy life styles of people there’s a trend where people are mostly referring to
e-news sites to know day to day incidents happening around the world. With its
convenience more and more people prefer to read news online instead of reading the
paper-format press releases. Although more and more information from around the
world is available online and often at no cost, many news readers only consult a small
subset of news sources. Reasons include the overwhelming number of sources where
there is an enormous amount of news items from varied e-news web sites, language
barriers, or simply habit. It’s time consuming to refer all those news items one by one
in these numerous e-news web sites. In addition, when people are interested in a certain
news item and wants to know important details of that news item they might need to
refer number of e-news web sites which is also time consuming. Therefore rather
reading the entire detailed news article if a summary of the related news item can be
displayed it will be convenient for the users [4]. With the vast domain of information
available in numerous sources, people hope to obtain their interested news fast and have
pleasant reading experience. The classical solution usually used to solve the
information overloading is a recommendation, especially personalized
recommendation [7]. A challenging problem is how to efficiently select specific news
articles from a large corpus of newly-published press releases to recommend to
individual readers, where the selected news items should match the reader's reading

preference as much as possible. Therefore it's a timely requirement to develop a system

of classified, aggregated, summarized and personalized news items gathered from

varied e-news portals.

1.4 Aim & Objectives
1.4.1 Aim

To develop a system to classify, aggregate e-news articles gathered from varied e-news
portals and generate a separate summary for each e-news cluster from the aggregation

phase and further provide personalized e-news recommendations.

1.4.2 Objectives

e Review the literature on e-news classification, aggregation, summarization and
recommendation systems.

e Design and develop a module to extract text information from web news pages
and classify the extracted news items as sports news, political news, financial

news etc...

® Design and develop a module to cluster the similar news articles gathered from

different e-news web sites together.

e Design and develop a module to generate a separate summary for each e-news

cluster.

® Design and develop a module to give personalized news recommendations by

tracking user behavior patterns.

e Evaluate the proposed system.

1.5 Conclusion

The problem of information overloading in the e-news context has lead people to consume
lot of time and effort in finding what they exactly want. When presenting a solution to this
problem with an e-news classification, aggregation, summarization and recommendation
system there exists a number of approaches used by various researchers. Through this
research project our main concern was to identify the most efficient, accurate and suitable

approaches to address this problem.

Chapter 2

2. Literature Review

2.1 Introduction

In this chapter we mainly focus on analysing the similar approaches to solve the above
mentioned problem. This chapter compares the other’s work along with our solution
and brings out the importance and uniqueness of our project. This chapter analyses the
features and pitfalls of the existing approaches in detail. We identify the gaps in
currently used approaches and design our system to address the identified pitfalls of the

existing systems.

2.2 Automatic e-News Extraction

There are two stages in the extraction process. First, the e-news websites are crawled to
gather e-news pages. Then e-news article contents are extracted from e-news web
pages. The e-news websites consist of different types of web pages such as
advertisement pages, blog pages, shopping pages, etc. Therefore extracting only e-news
item is a challenging task. Most of the time e-news sites are not static, they change their

layout dynamically over the time.

2.2.1 DOM Tree Exploration

Gupta et al. [9] and Mukherjee et al. [10] discover the idea of using a DOM tree-
based method. Gupta [9] explain Crunch, it is a content extraction tool which delivers
a set of customizable filters to reduce the clutter from the web page. They optimize the
link to text ratio in link list remover which removes nodes with a high link to text ratio.
Using only the text-to-link ratio yields particularly low recall, and this approach is
unsatisfactory to extract the e-news articles from e-news webpages. Crunch differs from
the CoreEx approach in two key aspects. First, it is intended as a common tool for pages
from diverse domains, and is not only news focused. Second, it uses to interact with
a human and is not a fully automated system. An extension of their work [11] attempts
to automatically classify a Web site and use earlier adjusted settings for
extraction. Mukherjee et al. [10] have developed a system to automatically annotate the

content of the e-news Web sites considering semantic analysis structural of the DOM

7

nodes. They partition the HTML by structural analysis. The partitions are
assigned semantic labels by a prefixed ontology and lexical associations with the
support of WordNet. They achieve 100% recall and precision for 35 e-news article
pages from 8 e-news websites their precision and recall are over concept instances, and
not actual content blocks as in our system. A news article page has only one instance

of the concept of detailed e-news, which their system extracts perfectly.

2.2.2 Scoring Blocks

Lin and Ho [12], Yin and Lee [13], and Tseng and Kao [14] introduce approaches that
split an e-news web page into blocks and score them to identify their importance. Lin
and Ho [12] recognize informative content blocks by calculating the entropy values of
terms in a block consider on their occurrence in an earlier seen set of web pages from
the same e-news web site. But there are restricted to pages that use an HTML <table>
layout. Since the entropy value is calculated on a per-page cluster, their system cannot
process single web pages from unseen e-news websites, unlike CoreEx. Yin and Lee
[13] construct a graph model of a Web page and then apply link analysis on this graph
to compute a PageRank-like importance value for each basic element. Unlike our
system, they give a continuous measure of importance for every element. Their system
yields a recall of around 85% for 788 news articles. Tseng and Kao et al.[14] propose
a technique for recognizing primary informative blocks by weighting the blocks using
features that capture the “’regularity, density and diversity” of each block. We cannot

compare CoreEx with their work as they do not report results on news sites.

2.2.3 Machine Learning

Preceding work has also applied machine learning techniques to address this problem.
The Columbia News blaster Project [15] uses an article extraction module that extracts
34 text-based features used by the Ripper machine learning program. Song et al. [16]
train models to absorb the importance of blocks in web pages using neural networks
and SVMs. The authors found that a feature based on the number of links proved to
be the most discriminating in their set of 42 features. Lee et al. [16] proposed

PARCELS, a system that uses a co-training approach with stylistic and lexical features

to categorize the blocks inside a web page. Gibson [17] use a Conditional Random Field

sequence labeling model to label parts of the page as content or not content.

2.2.4 Wrappers

Laender et al. [18] deliver an analysis of several web page data extraction systems
which use wrappers for their approaches. Muslea et al. [19] and Kushmerick et al. [20]
discuss automatic learning of wrappers. Metanews et al. [20] is an information
gathering agent for e-news articles that employ wrappers. It eliminates redundant
HTML tags and uses pattern matching with site-specific manually defined patterns on
the reduced page to extract e-news articles. Though wrappers can provide an excellent
text extraction, they work only on precise web pages or sets of web pages that share
the same layout. Once the layout changes, the wrappers essential to be updated as well.
This instability unfortunately requirements, continuous supervision of wrapper-based

approaches.

2.2.5. RSS Feeds

Hao et al. [17] proposed the approach to create automatic e-news article contents
extraction based on RSS feeds. This method is appropriate to collect data from
frequently updating web pages. This method is layout independent and it does not

require to consider about news site before the extraction process.

2.3 E-news classification approach

In our approach, providing categorized e-news articles is an essential requirement for
e-news aggregation, summarization, and recommendation models. This process may
classify e-news articles into predefined news categories like political news, financial

news, sports news, entertainment news, technology news, environment news etc.

There are different types of classifiers are used in different research papers. Basically,
classification techniques are classified into five different categories such as supervised
machine learning algorithms, unsupervised machine learning algorithms, semi-
supervised machine learning algorithms, content-based learning algorithms, and

statistical learning algorithms [21], [22]. The learning algorithm in supervised machine

learning is provided with input values, and output labels do not easily identify a function
that approximates this behavior in a generalized manner. Examples of supervised
learning techniques are SVM, decision trees, genetic algorithm, artificial neural

network, Naive Bayes, Bayesian network, and random forest.
2.3.1 Support Vector Machines

SVM is a supervised learning algorithm which works better with smaller datasets too.
It is a very powerful algorithm. It could be used for both classification and regression
approaches. However, classification is the most widely used approach of SVMs. In
SVM s each data sample is plotted in a high dimensional space with the attributes of
the data sample as dimensions [23]. Through finding the hyperplane, which separates
the two classes very clearly classification can be done. Attributes represented by binary
classifiers are known as binary attributes. The presence or absence of the attribute is
detected by the binary classifier. The most popular attribute learning model is this

classifier.

In Inoshika et al.[24], the training process was developed in order to recognize whether
the selected message belongs to the group ‘A’, messages will be classified as "Group
A" or "other". Then messages in “other” as “Group B” or “other”. That classification is
done until all classed are classified. In this approach, the process needs to do
repetitively. It’s time and cost consuming. So there should be an optimal mechanism to

use the SVM machine learning algorithm in the more efficient way.

2.3.2 Naive Bayes Classifier

Naive Bayes algorithm classifies a dataset into two or many classes. Ramon et al. [25]
proposed method using Naive Bayes to classify newspaper advertisements. Naive
Bayes is statistical classification technique. Let w{* = w; ... w,, denote the n words

representing the textual content of the advertisement. The classification score is

P(C).np(wiw)

Some researchers comparing the performance of two or more individual classifier on
the same data set to show that which classifier perform well on what kind of data set.

In the context of combining multiple classifiers for text classification, a number of

10

researchers have shown that combining multiple classifiers can improve classification

accuracy.

2.3.3 K- nearest- neighbour algorithm

Jiang et al. proposed a text classification approach based on a modified K- nearest-
neighbor algorithm. It is combined with a constrained one pass clustering algorithm
[26]. Uguz et al. The proposed algorithm for reducing the number of features using
information gain feature selection approach. For feature selection the genetic algorithm
and principle component analysis are applied. Then for the classification k-nearest
neighbor algorithm and decision tree algorithm will be used. This approach is efficient
but could be improved by the introduction of few more powerful classifiers or an

ensemble of classifiers [22].

2.4 E-news Aggregation

The basic idea of e-news aggregation is identifying similar e-news articles from
different sources and putting them into a single location for easy viewing. Mainly there
are three subtasks in the e-news aggregation process namely preprocessing, feature

extraction and clustering.

2.4.1 Feature extraction

Various methods and techniques can be applied for the extraction of features and they

are described in detail in the following sections.

2.4.1.1 Latent Dirichlet Allocation Model (LDA)

Latent Dirichlet Allocation Model is a topic modeling technique which represents a text
document as a mixture of pre-extracted set of topics. The model takes a set of text
documents as the input and the number of topics which need to extract as a parameter.
The specified number of topics is equal to the number of features. The model extracts

the features using following steps. Suppose the specified number of topics is k;

11

e Read each text document one by one and assign each word in each document
into randomly selected topic. This random assignment of words into topics gives
topics representation for entire document set and gives words representation for
every k topics but these assignments are not correct.

e To improve the quality of the topics, we need to consider each word in each
document and calculate two things for each topic.

o V1 =The number of currently assignments of word w from document d
into topic ¢/ The number of occurrences of word w in document d

o V2 =The number of currently assignments of word w from document d
into topic ¢ / The number of currently assignments of word w from all
the documents into topic t

e Then re-assigning word w of document d into topic ¢ which has maximum
V1*V2 for word w and document d.

e More accurate and stable assignments of words can be obtained by repeating
the previous step a large number of times.

e After getting more accurate and stable topics, feature value of each document
for each topic is calculated as follows

o The number of all the assignment into topic t from document d / The

total number of words in document d

The problem with LDA model is the specification of the number topics is needed before
extracting the features. But in the application of news article clustering, the number of

topics is not known before running the algorithm [3].

2.4.2.2 Doc2Vec Model

Doc2Vec is an unsupervised feature extraction technique for text documents and it is
heavily based on Word2Vec algorithm which represent words as vectors by considering
semantic relationship between words. Word2Vec is a neural network model and

Doc2vec is an extension of Word2vec.

12

wl
w3
W1
w4 /
W2
W3
: Q
D1
D2 Wn
Hidden Layer Output Layer
Dm
Input Layer

Figure 2.1: Neural Network Model of Doc2vec Model

There is one input node per each word in the corpus and there is one input node per
each document in the data set. The only one difference between Doc2vec model and
the word2vec model is the document input vector. The network is trained as normal
word2vec model and the only difference is that we update the weights between
document input vector and hidden layer too. Each document input node has connected
to each hidden node and number of nodes in the hidden layer is equal to number of
features. The weights between particular document input node and hidden nodes be the
feature values for that document. The main problem with doc2vec model is that the

algorithm gives poor results when the length of a document is small [4] [28] [29].

13

2.4.2.3 K-means clustering

K-means algorithm is a very popular clustering algorithm and it is widely used because
of its simplicity. Before running the algorithm, the number of clusters should be

specified as a parameter.

First, the algorithm randomly initialize a midpoint for each cluster and those midpoints
are called as centroids. The number of initialized centroids should be equal to the
specified number of clusters. After initializing the centroids, consider each data point
one by one and find the nearest centroid for each data point by calculating euclidean
distance. The data points which belong to the same centroid are considered as one
cluster. After that, calculate midpoint coordinate again by getting average euclidean
distance of data points which belong to the same cluster. Then the previous centroids
are replaced by the newly calculated midpoints. We need to repeat this process until we

get stable centroids.

Mainly, there are two major problems with k-means clustering algorithm. First one is
the output is always depend on the initialization of centroids and because of that the
algorithm gives different results for different runs. The second problem is, we need to
specify the number of clusters before running the algorithm. But in the application of
news article clustering, the number of clusters is not known before running the

algorithm [30].

2.4.2.4 Affinity propagation

Affinity propagation is a newly introduced clustering algorithm which is based on the
concept of message passing between the dataset. The main problem of k-means
algorithm and other similar clustering algorithms is that they require to estimate the
number of clusters and selecting initial centroids. Instead of that affinity propagation
finds the clusters by taking input measures of similarity between data points, and

simultaneously consider all the data points as potential exemplars.

14

Let’s consider X = {x;, x2, ..., xn/} is the data points in the dataset. The algorithm runs
recursively by updating two matrices. Those are responsibility matrix and availability
matrix. Responsibility 7(i,k) represents, how well-suited point k is to consider as the
exemplar for point i by relatively considering other potential exemplars for point i. The

responsibility matrix is updated by using following function.
r(i,k) = s(i,k) — max (a(i, k") + s(i, k")) Where k'#k

Here s5(i,k) represent the similarity value between i and k& data points. According to the
above function, for the calculation of r(i,k) the algorithm required the similarity
values(i,k) and availability value a(i, k) calculated by the previous iteration. At the initial
step, all availability values are set to zero. Availability a(i,k) represents how
appropriate it would be for point i to choose point k as its exemplar, taking into account
the support from other points that point k should be an exemplar. The availability matrix

is updated by using following function.

a(i, k) = min (0, 7(k, k) + z max (0, 7(i’, k)))

i'#j,k

Where I # kand

a(k, k) = z max (0, 7(i', k))
Jjr£k

The responsibility matrix and availability matrix is updated until the cluster boundaries
remain unchanged over a number of iterations, or after some predetermined number of
iterations. At any point in process, summing Responsibility (r) and Availability (a)
matrices gives the clustering information. The exemplars are selected from the final

matrices if (7, i) + a(i, i) > 0.
The problem with affinity propagation clustering algorithm is that the algorithm cannot

identify the outliers. In the application of news article clustering, an outlier is a news

article which has not any similar news articles in the dataset [31].

15

2.5 Intelligent e-news summarization

Automatic text summarization can be defined as “the process of automatically creating
a shorter version of text as its essential part”[34]. An automatic summarization
approach will have mainly three steps to follow. They include topic identification,
interpretation and summary generation. In the topic identification step the most
prominent parts from the original text need to be identified and there are various
techniques available in the context for topic identification. Interpretation is used to
remove the redundancies and merge different subjects to form one general content. In
the summary generation step the system uses text generation method and the sentences
are put into the summary in the order of the position in the original document [35].
There are two main types of automatic text summarization namely abstractive text

summarization and extractive text summarization.

2.5.1 Extractive text summarization

Extractive text summarization provides a syntactic level of representation which
extracts the salient parts from the original text and then concatenate them into a shorter
form to generate the summary [36]. Extractive summarization mainly involves the
major steps namely pre-processing, processing and the post processing steps. A
structured representation of the original text can be taken after pre-processing. Sentence
boundary identification is a pre-processing technique which identifies the sentence
boundaries with the presence of a dot at the end of a sentence. There are many NLP
tools available for sentence tokenization like OpenNLP, NLTK and TextBlob. Word
tokenization breaks down the extracted sentences into meaningful units called tokens.
A token can be an individual word, number or a punctuation mark. The tools for word
tokenization in the NLTK include TreebankWordTokenizer, WordPunctTokenizer,
PunktWordTokenizer, WhitespaceTokenizer etc. Stop word elimination removes the
common words with no semantic like ‘a’, ‘and’, ‘the’ which do not have any emphasis
on the summary generation. Stemming derives the stem or radix of each word which
emphasize its semantics. Porter stemming algorithm is one of the most popular

stemming algorithms available in the context.

16

In the processing step we have to define the algorithm of the text summarizer. So the
features which influencing the relevance of sentences are decided and weights are
assigned to each feature and thereby assign scores for each sentence. Then the top
ranked sentences are used to generate the summary. There is lot of work that has been
carried out in the extractive summarization. There are various extractive text
summarization approaches used by the researchers and some of them are described
below. Finally the post processing involves tasks like redundant sentence removal and

sentence ordering.

2.5.1.1 Term Frequency-Inverse Document Frequency (TF-IDF) method

The term frequency-inverse document frequency is a very primitive method of text
summarization. Hans Christian, Mikhael Pramodana Agus, Derwin Suhartono et al.
[37] have discussed a Term Frequency-Inverse Document Frequency (TF-IDF) based
text summarization approach. TF-IDF is used as a measure to score the sentences which
is based on the word frequencies which reflects how important a word is to a document
in the corpus. They had only used nouns and verbs of the text considering that they
bring the important details about the text. Then a score is assigned to each sentence by
taking the sum of the TF-IDF values of every noun and verb in the sentence. Then the
sentences are arranged in the descending order of their scores and the final summary is
generated using only the top ranked sentences. The amount of sentences extracted for

the summary depends on the compression rate.

The major limitation of this approach is that the accuracy of the results was low since
they have used only one measure, the TF-IDF to extract the important sentences from
the text. But if number of features like cue words, relative length of sentences,
identification of title words could be integrated together then the accuracy will be

higher.

2.5.1.2 Text summarization with Artificial Neural Networks

Dharmendra Hingu, Deep Shah, and Sandeep S. Udmale et al. [38] have presented an

Artificial Neural Network based approach for extractive text summarization. They have

17

used features like relative position of sentences, named entities, cue-phrases, title
relevance, relative length of the sentences, frequencies of words and numerical data to
train the neural network. The neural network consists of input layer neurons for the
above features, a hidden layer and one output layer neuron which outputs the score of
each sentence. Here synonym checking is also performed to assign same weights for
words with the same meaning. So the weights for these extracted features for each
sentence are fed into the neural network as inputs. Supervised learning is used to train
the network and the output is the score for each sentence based on the weights of
features fed into the system. That score is directly proportional to the importance of the

sentence. These scores are then used to generate the summary.

This approach is better than the TF-IDF method since it concerns number of features
when extracting the most important sentences. But the limitation here in this approach
is it takes lot of time for the training process because a huge text corpus is required in

order to have accurate results.

2.4.1.3 K-means clustering based text summarization

Sumya Akter, Aysa Siddika Asa, Md. Palash Uddin, Md. Delowar Hossain, Shikhor
Kumer Roy, and Masud Ibn Afjal et al. [39] have designed a multi document extractive
summarization system using the k-means clustering algorithm. In this approach the
word scores are given based on the TF-IDF measure and then the sentence scores are
assigned by summing the term frequencies of words in the sentence with its position. If
any cue word is present in the sentence the sentence score is incremented by one. Then
the sentences are ranked in the descending order of their scores and two clusters are
initialized taking the maximum sentence score and the minimum sentence score as
initial centroids. Then the Euclidean distance from each sentence to the two centroids
are calculated and the sentences are assigned to the cluster which has the minimum
distance. Then new centroid values for each cluster are reassigned and the same process
is repeated until the centroid values won’t change. Finally the top sentences from each

cluster are taken to form the final summary.

18

The limitation in this approach is that it consumes lot of time and effort since defining
the k value at the beginning is tricky and the most optimal k value can be gained only

by the trial and error process.

2.5.2 Abstractive text summarization

Abstractive text summarization assumes a semantic level of representation of the
original text and involve some linguistic processing [40]. Therefore abstractive text
summarization involves understanding the main concepts of the original text and
express them in a clear natural language. But the researches on abstractive text
summarization are not evolved yet and therefore they do not provide acceptable level

of accurate results.

2.5.2.1 Rich semantic graph reduction technique

Ibrahim F. Moawad and Mostafa Aref et al. [41] have presented an abstractive
summarization approach using the rich semantic graph reduction technique. A Rich
Semantic Graph is an ontology based representation developed to be used as an
intermediate representation for natural language processing applications. This approach
consists of three phases creating a Rich Semantic Graph for the source document,
reducing the generated Rich Semantic Graph to more abstracted graph and finally
generate the abstractive summary from the abstracted Rich Semantic Graph. The input
document can be represented semantically by creating a Rich Semantic Graph. In the
Rich Semantic Graph the nodes represent the verbs and nouns of the original text along
with edges corresponding to semantic and topological relations between them. Named
entity recognition, morphological and syntactic analysis, cross-reference resolution are
considered in creating the Rich semantic Graph to reduce the syntactic ambiguity and
then retrieve the typed dependency relationships between words. In this phase Rich
Semantic sub graphs are created for all the sentences in the input text individually. Then
the sentences rich semantic sub graphs are merged together to represent the whole
document semantically by creating the final rich semantic graph. In the Rich Semantic
Graph reduction phase a set of heuristic rules is applied to reduce the graph by
replacing, deleting or consolidating the graph nodes using the WordNet relations.

Finally an abstractive summary is generated from the reduced Rich Semantic Graph.

19

The limitation in this approach is low accurate results are gained since the abstractive

summarization is not grown up to the standard yet.

2.6 E-news Recommendation

With the development of the technology, recommendation systems are most important
for the online web based applications and mobile applications. It’s like tracking user’s
behavior, interests and day to day works without user’s intention. Platforms like
Facebook, LinkedIn, YouTube, Netflix and Amazon use recommendation engine for
providing better service for their customers [42]. Social media applications like
Facebook suggests friends for their users to communicate, LinkedIn provide job
recommendations for the users, YouTube suggests recommended videos for the users,
Netflix suggests recommended movies for their users, e-commerce sites like eBay,
Aliexpress and Amazon recommend goods for the users to buy. They use this kind of a
recommender system to increase product sales and user satisfaction, by providing

correct and most relevant information.

After the web provides access to the online news articles, online news reading became
more popular with millions of sources available to the users to read. A key challenge is
to provide user interest and news articles the users want [43]. As a result of this, news
recommendation has become a new way to introduce news for the users. Yahoo and
Google first introduced this kind of a system to the world and after that many other
news providers also identified the value of this and they also changed their news portals
for more user friendliness [44] [45]. Because of the internet, everyone can easily access
to the web contents which provide enormous number of news articles are updated in
every mass media within every minute. When providing news recommendation for the
user, we need to consider user’s long term and short-term interests and social
relationship of the user with the time manner. Many surveys notify that people are not
selected news based on titles, and read only 3 or 4 lines. Hot news (popular news)

change frequently and it’s needed to recommend those in sensitive manner for the users.

Recommendation systems can be categorized into two sections. Those are personalized
and non-personalized (Popularity based Recommender System). Non-personalized

recommendation means without considering individual user’s preference, system

20

provides general recommendation to the users. When we login to the news portal it
provides most popular news items around the world. These popular items are based on
age, geography, sex, count of purchases, feedback etc. [45]. Based on these parameters,
system calculates the mean of the news rating of all the users and lists down the news
articles according to their mean value. This is called as a “stereotyped recommender
system”. But there is a problem with this system, when there are less number of ratings
available mean value will be less accurate. So, this kind of a system provide less

confidence.

Personalized recommendation system means that it provides recommendations based
on individual user’s behavior and interests. User’s interests and behaviors are difference
from user to user. So, it’s necessary to provide recommendation based on individual
user’s preferences. Based on above information user profiles are created, where the user
profiles help to provide recommendations for the users. Personalized recommender

system can be divided into 3 main categories based on the recommendations made [45].

e (Content-based recommendation system
e (ollaborative recommendation system

e Hybrid recommendation system

~
AR
" ——
User profile & =
contextual prameters "'*\
v
ten | score
1 09
3 2 1
> 3 | 03
[Tige [Genrs [Acors | .
P :
e Recommendation Recommendation
Product features component ist
4
/l‘
® 7
a5 ”
Pt
[=] —_—

Knowledge models

Knowledge-based: Tell me what fits based on my needs

Figure 2.2: Content-based Recommendation System

21

Content-based recommender systems provide recommendations based on the user’s
past behaviors and interests. Google and Wikipedia are examples for these kinds of
systems. The basic idea of this is keeping keywords of the past articles and provide
recommendations based on them. But the biggest problem here is large pie of
information provides some difficulties to provide recommendations. As an example, if
someone searches for “The University Culture”, there will be large number of
documents containing the key words “The” and same as for the “Culture” as well, but
collaborative filtering algorithm is most widely used algorithm for the news
recommendation. News portal like Digg uses this kind of a technique for news

recommendation [46].

News content is often represented using vector space model. A well-known method is
TF-IDF. Before calculating the TF-IDF values, a series of preprocessing steps are
executed, including removing stop words, tokenizing, stemming and so on. Then a news
article is represented by a keyword vector, where each entry is the TF-IDF value of the
corresponding keyword. Based on the history of user’s behaviors, the user profile can
be created. For a newly-published news article, we can compute the similarity between
the user profile and the news article by similarity functions (Jaccard similarity or cosine

similarity).

" q; Xt QuePit

l —
IIpIIZIIqIIZ N~ |
“ l thut thlt

cos(pu, q;) =

2.6.1 News Ranking

Created user profile can be used for the news recommendation. For each user, every
news article set is evaluated to find the similarities between them. As the first step, it’s
needed to crawl an upcoming news and then filter noisy words and sentences to extract
relevant information from the article. Secondly, the TF-IDF scores are calculated and
then stored in “News Profile”. Last, these similarity scores which are in User’s profile
and News Profile are computed using cosine similarity function. Following figure
shows the brief understanding about the above scenario according to the rank of the

news recommended to the user.

22

User’s profile News profile News ranking

Keyword TF/IDF Keyword TF/IDF F— News Ranking
score score F News 1 9
Apple | 0.0174 |—| Apple 035 | News 2 23
Samsung | 0.0116]| / Google 027 — | News 3 1

Google | 0.0204 Jump 0.12 | News 4
: : / P l : L News 5 5
News 1 - : :
Ne\/styl I

Figure 2.3 : News ranking with user profiles

Collaborative recommender systems are based on the nearest neighbor concept and it
consists of two major filtering concepts [42] [45]. Those are User-based filtering and
Item-based filtering. User-based filtering looks at the similarities between users and
Item-based filtering looks at the similarities between items (News articles). To calculate

how similar two users, Karl Pearson’s correlation formula is used [42] [47].

2.6.2 User-based Collaborative Filtering Algorithm

2.6.2.1 Improved Pearson Correlation Coefficient Formula

Because the news has the characteristic of strong timeliness, lot of users tend to click
on top news and comment in a specific period. When the recommendation system
analyzes the user's interests and calculates the similarity of users [7]. Two users reach
a consensus over controversial news items is more valuable than the hot news. Visibly,
the hot factor will seriously affect the recommendation system on mining interests of

users, thereby affecting the personalized service provided to the users.

Therefore, Optimization of Pearson correlation coefficient formula by introducing the
parameter of hot, can reduce the importance of the popular news to finding similar
users, improve the recommendation accuracy rate and enhance the user experience. The

hot (hj) of news j is calculated for analyzing is as follows:

N T
h] = %} (hJ >0)

23

Here, N represents the total number of users (including users who did not score on the
news), rij represents the ratings of the user i to the news j. In calculating the sum of
ratings, if the user i has no ratings record to news j, skip the user thus it can be seen that
more people score on the news j and higher the score, the more popular the news. The
hot value range is 0 <hj<Max (rij) [43]. Each user's ratings on the news they visited is

a vector, which is expressed as follows:
u =(ryy, r12,..,r,n)

The average score for the user u to all news items is (r_u r, the ratings news set of user
x signs as Jx, and the ratings news set of user y signs as Jy, Union news set commented
by Users x and y signs as Jxy, Using the traditional Pearson correlation coefficient

formula to calculate similarity between the user x and y is as follows [46]:

Zje] xy(rx,j - @(ry.j - @)

\/Zjef xy (T j — T)* szel xy(ry,j = 15)?

sim(x,y) =

The improved Pearson correlation coefficient formula used to calculate the similarity
is:

1 _ _
Zje]xyh_j(rx,j - Tx)(ry,]' - T'y)

sim*(x,y) =

\/Zjef xy (T j — T)* szel xy(ry,j = 15)?

As it can be seen from the formula improved, the more popular the news, for the

calculation of the similarity between user x and y smaller role.

2.6.2.2 User-Based Collaborative Filtering Algorithm
1. To preprocess the ratings data of user u

Create a user-rating matrix for the target user, and obtains the average ratings of the

user u on all news items ry:

24

Here, N refers to the total number of news, Jui represents the ratings of user u on news
J-

2. Similarity calculation between users to select the neighbor set U of target user

u calculating the similarity of target users and others by improved Pearson

Correlation Coefficient formula.

[_ _
Zje]uih_j(ru,j -) —)

\/Zfelui(ru,j —7)? \/Zje]ui(ri,j —n)?

sim (u,i) =

Among them, Jui represents the union news set of user u and i commented.
3. Predicting the ratings of user u on candidate news items to obtain the results of

recommendation.

The predictive scoring formula of user u for news j is:
Tuj = TTI. + ZZu EU sim (u'u) (Tu',L - ﬁl)

Wherein, U is the set of neighbors of target user u, z is a normalization factor:

1

7= :
Ywey Sim(u, w)

In addition, during the process of predicting ratings, before the user u's neighbors have
an impact on u, the first step is cutting their respective average. It does take full account
of impact of previous rating habit of users that may always scores high or low to

accuracy and objectivity of forecasting results.

2.6.3 Item-based Collaborative filtering algorithm

Item-based CF looks for items (News articles) that are similar to the articles that the
user has already rated and recommended. But what does that mean and when we say

item-item similarity? In this case it doesn’t mean whether two items are the same by

25

same attribute, what similarity means is how people treat two items the same in terms
of like and dislike. This method is quite stable as compared to user based CF [§],
because the average item has a lot more ratings than average user. So, an individual

rating doesn’t impact as much.

Although user-based CF approaches have been applied successfully in different
domains, some serious challenges remain when it comes to large data manipulations
systems, which need to handle millions of users and millions of data. When it comes to
the news items, vast number of sources provide thousands of news articles daily, so it’s
impossible to compute and make predictions in real time. Similarity between two news
articles (j1 and j2) is calculated by taking the ratings of the users who have rated both

the news items using the cosine similarity function.

Zu(ru,jl - TTJ)(Tu,jz - E)

(BaCrugs =70 [Sutus = 7)?

sim (jy,j2) =

Once we have the similarity between the items (News articles), the prediction is then
computed by taking a weighted average of the target user’s ratings on these similar
news articles. The formula to calculate rating is very much like the user based
collaborative filtering except the weights are between news articles instead of between

users. So, predictive scoring formula of user u for news j is [46]:

Xjessim (,j)ry

Tuj = - —
“ j'e] sim (j,j°)

Most collaborative filtering algorithms are based on neighborhood formation concept.
The Neighborhood formation concept is based on Pearson correlation or Cosine
similarity algorithms, but the problem is neighborhood algorithms may not be able to

produce many news recommendations for the user.

26

2.6 Summary

This chapter summarizes the recent approaches used to solve the identified problem.
Through this chapter the recent approaches and the pitfalls and gaps that exists of them
are identified. The way we are going to address the identified issues will be discussed

in the next chapters.

27

Chapter 3
3. Technology Adopted

3.1 Introduction

Through this chapter we are going to focus in brief about the technologies we used in
implementing the system. We analyzed many technologies which are most appropriate
to be used in implementing our system. These technologies contain certain algorithms,
libraries and different technological approaches we have used. After studying about the
problem we are going to address in detail, we chose the most appropriate technologies
to be used in our approach. This chapter also reveal the suitability of the adopted

technologies over the other technologies available.

3.2 Programming Languages

The major programming language used for developing this project is Python. The
reason which led us to choose python as the main programming language for our project
was that python exhibited high performance for developing machine learning projects
against other programming languages. There were also lot of resources which support
machine learning tasks for python language. Python is a high level programming
language which supports object oriented programming and functional programming.
Python is a robust language which provides a variety of useful libraries which makes
python a powerful language in order to incorporate with number of functionalities.
Pycharm IDE was used as the development environment for python. Python also has the
support for GUI designing and Tkinter is a popular GUI toolkit provided by python. It

also supports frameworks like Django for developing web applications.

3.3 Development Tools

Scrapy and newspaper libraries were used for extracting the e-news content from
different e-news web portals. Variety of other libraries like numpy, scipy, pandas,
Natural Language Toolkit (NLTK), scikit-learn, networkx, difflib were also used to
implement the system. NumPy provides support for large, multi-dimensional arrays and

matrices, along with a large collection of high-level mathematical functions to operate

28

on these arrays. SciPy is used for scientific computing and pandas is a useful library for
data manipulation and analysis. The NLTK provides tools for processing natural
language for English language. Scikit-learn is a machine learning library featured with
various classification, regression and clustering algorithms. Networkx is a used for
studying graphs and networks. The difflib module contains tools for computing and

working with different sequences, especially for sequence matching of text.

3.4 Natural Language Processing Toolkit (NLTK)

The system uses NLP tools to convert the human language into the machine language which
can be easily understand by the machine. So NLP tools provided by NLTK (Natural
Language Tool kit) based on python is also used in the system for algorithms in natural
language processing. It supports various operations for processing human language like
tokenization, stemming, lemmatization, tagging and parsing. It also provides various
resources like lexical dictionaries such as wordNet. It’s a free and open source project

which supports various functionalities for the processing of English language.

3.5 Application Lifecycle Management (ALM)

Bugzilla server software was used as the ALM tool for this project. It was used for
project management tasks like tracking requirements, Project and Sprint backlog items
and their progress, planning team capacity and for development related activities such

as source control, build management, continuous integration etc.

3.2.5 Version controlling systems

When developing individual modules separately, integrating all the modules together
to build the final system is a quite difficult task. Therefore, git was used as the version

controlling system and the code repository throughout the development of the system.

29

3.3 Summary

The technologies we used in general is discussed. These technologies contain certain
algorithms, libraries and different technological approaches. There are more tools and

libraries that we could use in the implementation stage.

30

Chapter 4
4. Our Approach

4.1 Introduction

This chapter summarizes the approach used by us to solve the identified problem. The
conceptual approach is explained in terms of input, output and process for the modules.
The flow of inputs and outputs between the individual modules is identified through

this chapter.

4.2 Approach

The major components of the system identified are as follows,
e Data extraction phase
e C(lassification phase
e Aggregation phase
e Summarization phase

e Recommendation phase

4.3 E-news extraction phase

E-news extraction phase extracts e-news items using web crawling and scarping. We
use state-of-art tools as well. Our approach combines two advanced methodologies. The
URLs or RSS feeds of the e-news websites are given as inputs and the extracted e-news
items from the specified URLs or RSS feeds are outputted by the e-news extraction
phase. When extracting data we need to remove irrelevant data such as advertisements,

user comments etc. and extract only the e-news content from e-news web sites.

Web crawling, scarping
Data Source URLs I Extracted Data

Figure 4.1: E-News Extraction

4.3.1 Inputs into the e-news extraction phase

31

At the beginning of the process, the user provides root URLs or RSS feeds into the
system. Web crawling and extraction are the next stages of the process. Newspaper
python library is used for scraping and feedparser library is used to read RSS-feeds.
These days most of the e-news websites provide RSS feeds. If there is RSS-feed
available, the system uses it for the scraping purpose. Newspaper automatic e-news
article scraper is used for other URLs. We scrape from the RSS feed first, because the
data is much more reliable when gathering through the RSS feed. JSON file is used to
feed system from RSS feeds and root URLs which makes it convenient to add or remove
new e-news websites. Feedparser is used to load the RSS feed of the e-news web site.
It builds the structure for the data by constructing dictionary Newspaper. An article
dictionary is created to store records for each e-news article. Then newspaper library is
used to scrape the content of the links which we got from the RSS-feed. Finally, the
data object is saved to file as JSON.

4.3.2 Output by the e-news extraction phase

Data object in the JSON format is the output of the e-news extraction phase. It contains

e-news titles and content in text format.

4.4 Classification module

Classification module classifies news items into predefined categories such as political,

entertainment, sport, business and technology.

Extracted Data Processed Data

; Ensemble
> | Presprocessing | ———> Classfied e-news

Classifier

Figure 4.2: E-news Classification

32

4.4.1 Inputs into the classification module

Extracted raw data is provided as the input to the classification module. Pre-processing
techniques are applied to these data to improve the quality of the data. Then learning
level gets that information and extracts features from the processed data. It selects most
optimal features and then constructs the classifier. In the classification, we use a novel
approach by using an ensemble classifier by assembling several different classification

models.

4.4.2 Process of the classification module

The whole functioning of the classification module can be subdivided into different

tasks namely;

e Pre-processing
e Feature extraction
e Training each classifier

¢ Building the ensemble classifier

4.4.2.1 Pre-processing

The pre-processing is significant in text processing as well as text classification,
because it supports, to sum up, an article effectively by removing redundant words and
confirming each word to its root form, helping the classifier to recognize the article
more easily and efficiently. In pre-processing, we remove noise from data, which are
irrelevant to our process such as advertisements, user comments, etc. and do transform
cases, text tokenization, stop word removal, word stemming, lemmatization and POS

(Part Of Speech) tagging.

4.4.2.2 Feature extraction

Feature extraction is the next stage. We use “term frequency—inverse document
frequency” (TD-IDF) method to extract features from the e-news items. Using this

method we can measure how frequently a word is occurring in an article. Each

33

document has different lengths. So long article could have a higher frequency than the
shorter article. Therefore as a normalization method, the term is divided by the article

length. BBC data set is used to extract features.

4.4.4.3 Training each classifier

BBC news dataset contains both news and related categories of each news item. These

news and the labels are used to train the classifiers.

4.4.4.4 Building the ensemble classifier

Ensemble classifier by assembling several different classification models together is
used for our classification. It gives a low error rate and it lowers over fitting when
compared with standalone classifiers. The theory of combining classifiers is suggested
as a novel direction for the improvement of the performance of individual
classifiers. Support Vector Machine (SVM), Neural Networks, Naive Bayes classifier,
Decision Trees, Discriminant Analysis, Nearest Neighbours and Random Forest
algorithms are considered as the most powerful classification algorithms. Therefore,
the classification algorithms namely the SVM, Random Forest, and Multi-normial

Naive Bayes were used to build the ensemble classifier after evaluating each of them

The soft voting method is used for the ensemble classifier and it gives more accurate
results than the hard voting method which doesn’t concern about the percentage of each

voting values.

4.4.3 Output by the classification module

E-news article category name i.e. political, business, entertainment, technology, sports

or other is given as the output by the classification module.

4.5 Aggregation module

The goal of news aggregation phase is to identify the news articles which are related to

the same topic or incident and cluster them. In previous phase the classifier categorizes

34

the news articles into different classes such as political, business, sports etc. The

aggregation module reads this classes one by one and finds clusters based on the

contents of the articles.

i

Cluster 1

Political

Business

Sports Cluster 2

E-news
Aggregation

Module

Technological

Entertainment Cluster 3

Clustern

E-news Classes

E-news Clusters
Figure 4.3: Abstract view of the e-news aggregation component

4.5.1 Inputs into the Aggregation module

Each news classes found by the classification phase such as politics, business, sport etc.

are given as inputs into the aggregation module individually.
4.5.2 Processing of Aggregation module

The basic process of the news aggregation module can be divided into following steps.

e Preprocessing
e Features Extraction

e (lustering

35

4.5.2.1 Preprocessing

In the preprocessing phase, the text documents are tokenized into words. Then stop
words and punctuations are removed. Stemming is applied as the final step of

preprocessing.

4.5.2.2 Feature Extraction

A news article is just a group of words. These group of words should be represented as
a group of numerical values to perform a clustering algorithm. Vector Space Model is
such a text representation technique where it represents a set of text documents as a
group of vectors based on term frequencies. In this phase Tf-Idf vector is calculated as

the feature vector for each of the news article.

4.5.2.3 Clustering

In the clustering phase, news articles are grouped as clusters based on the similarity of
feature vector which is obtained by the feature extraction phase. The articles which are
within the same cluster share similar topic or incident and the articles within different
clusters share dissimilar topic or incident. The clustering is performed by using Density

Based Spatial Clustering of Application with Noise (DBSCAN) algorithm.

4.5.3 Output of Aggregation Module

The output of news aggregation module is a set of group of news articles about the same
topic. The articles belongs to same group are sharing similar meaning and the articles

belongs different groups are sharing different meaning.

4.6 Summarization module

The ultimate goal of this module is to generate individual summaries for the clustered
e-news articles generated as outputs by the aggregation module. This generates
extractive summaries which extract the most salient information from the original

source documents themselves. The summarization module identifies the most

36

prestigious sentences from the original set of documents in the cluster by assigning an
importance score for each sentence in the original documents. Then it generates
individual summaries for the e-news articles in the cluster. Then those individual
summaries are compiled to form an aggregated intermediate level of summary and then
the redundancies are removed from the aggregated summary. The final summary
sentences are arranged in the coherent order and separate summary for each cluster of

e-news articles is presented to the users.

News article

cluster
Aggregation

> ——»| Summarizer |

ab

Figure 4.4: Abstract view of the e-news summarizer component

4.6.1 Inputs into the summarization module

The summarization module accepts e-news clusters outputted by the aggregation phase
separately. A cluster contains e-news articles which discuss about the same topic.
Within a particular news category there is a set of e-news clusters generated and that
set of clusters is given as inputs to the summarization module. Summarization module

accepts clusters from each e-news category too.

4.6.2 Processing of the summarization module

The processing of the summarizer consists of several phases namely;

e Pre-processing phase
e Document processing phase
e Sentence scoring phase

e Post-processing phase

37

4.6.2.1 Pre-processing phase

Each e-news article from the cluster were subjected to different types of pre-processing
techniques. Therefore the pre-processing phase involves techniques like sentence
tokenization, word tokenization, stop word removal, stemming, lemmatization and POS

(Part Of Speech) tagging.

4.6.2.2 Document processing phase

The hardest part in this research part is identifying the most significant sentences from
the original documents in the cluster to be extracted as the summary sentences.
Therefore we need a mechanism of ranking the sentences based on some measures of
importance to extract the important sentences. So a combination of few approaches
were used to assign each sentence an importance score and thereby identifying the
important sentences from the source documents. The approaches include:

e Graph based approach

e Feature extraction based approach

4.6.2.2.1 Graph based approach

A sentence similarity graph is generated for the original documents based on the
similarities between the sentences. Various similarity measures are available in the
context to find the similarities between the sentences. Cosine similarity, BOW (Bag of
Words) measure, Euclidean distance, Jaccard similarity are such measures used to find
the sentence similarities [48]. Then based on the similarities measured between

sentences the sentence similarity graphs are generated for original documents.
4.6.2.2.2 Feature extraction based approach

In this method the importance of the sentences are detected by considering the presence
of a set of pre-defined features in the sentences. Here we need to identify the type of

the feature set to be considered when determining the most important information from

the source documents. They include features like the sentence length, sentence position,

38

title word feature, named entity count, verbs count, nouns count, presence of numerical

values, key word frequencies etc. [38].

4.6.2.3 Sentence scoring phase

Based on the results of the previous phase a sentence score is given to each and every
sentence in the source documents. Sentences in the sentence similarity graphs are
scored by using the graph based ranking algorithm namely the PageRank algorithm. In
the feature extraction based approach, weights were assigned to the feature set based
on the importance of each feature when generating the summary. Then each sentence
in the source documents is given a score as a weighted average score. The final sentence
scores are assigned as an average of the scores by PageRank and weighted average

scores [49].

Then the sentences are arranged in the descending order of sentence scores and the
sentences with high ranks which cover a compression rate of 30% of the original
documents are extracted to generate individual summaries for the e-news articles in the
cluster [6]. Then all these individual summaries are summed up to form an intermediate

level of summary.

4.6.2.4 Post processing phase

Since the sentences for the summary are extracted from multiple e-news sites there can
be some redundancies of sentences and those redundancies need to be removed. The
similarities between sentences are examined in three perspectives namely syntactic
similarity which identifies sentences which have the similar syntactic relationship,
lexical similarity which identifies similar sentences based on the total overlap between
vocabularies and semantic similarity which identifies sentences with the same meaning.
After identifying these similarities between the sentences, the redundant sentences are

removed from the aggregated intermediate level of summary.

Sentence ordering is another post processing task identified in order to arrange the final
summary sentences to follow the coherent order. If there is no flow between the final

summary sentences, then it won’t be readable which displays characteristics of a poor

39

summary. So the sentences are arranged in the coherent order by sequence matching

and form the final summary.

4.6.3 Output by the summarization module

The output of the summarization module is an extractive summary which contains the
sentences with key information from the set of original documents in the cluster
themselves. So here all the individual summaries generated for each news article within
a cluster are processed and integrated together to form a one final summary. The
summarization module provides summaries for each e-news cluster in each e-news

category.

4.7 Recommendation phase

News Articles

Recommendation Svstem for User

Figure 4.5: Abstract view of the recommender component

Categorized e-news articles are stored inside the article database and those articles are
used by the Hybrid News Recommendation System to recommend news articles for the
user. Hybrid News Recommendation System consists of Content based filtering
module, Collaborative filtering module and Location aware personalization module.
The recommendation module provides the top N recommendations for the user. User
wise article scores (ranking) are stored inside article database that help to recommend
news articles based on the similar users which recommends news articles preferred by
one user to another user who has similar kind of interests. It helps to find similarities

between users and similarities between News articles (Collaborative Filtering).

40

4.8 Summary

This chapter identifies the overall high level architecture of the proposed system and
summarizes the contribution of the individual modules in terms of flow of inputs and
outputs and process to achieve the goal of the system, Conceptual structure and function

of the individual modules is summarized through this chapter.

41

Chapter 5
5. Analysis and Design

5.1 Introduction

This chapter focusses on the design of our approach through which we are going to
address the identified problem. The top level architectural diagram of the main system
elements and connections between them are described. Diagrams and designs are

included in this chapter with the description.

5.2 High level design and architecture

The system extracts e-news articles from a set of pre-defined e-news sites as data
sources namely BBC, CNN, Ada derana, News first, Daily news, the Guardian and Fox
news. Here given the URLs or the RSS of the e-news web portals the system
automatically connects with them and extracts news items from them. This extracts
only the text information from varied e-news web sites by excluding other irrelevant
content like advertisements and user comments. This process needs to be performed at
each specified time interval because these e-news sites are updating very often by
adding fresh news items more frequently. Then we need to pre-process these data and
then purified data is used for classifying the news articles into different pre-defined
categories like political, business, entertainment, sports, technology news etc. The
classified news articles are further processed by the aggregation module and the similar
news articles which are describing about the same news item from different e-news web
sites are aggregated together and displayed in a single place. The aggregated news items
are used by the summarization module to generate a separate summary for each e-news
cluster. Here an extraction based summary is generated by the system by extracting the
most salient information from original documents themselves. The recommendation
module uses the previously classified original e-news items by the classification phase
and gives personalized news recommendations by tacking user behaviors and by
identifying similar user groups. The user behavior is tracked by considering the past
browsing history of the users. The recommendation system builds user profiles which
contain user’s news interests. Here a hybrid approach with collaborative filtering,

content-based filtering and popularity model is used by the recommendation module.

42

RSS feeds or URLs

*
=3
e
o
e

Figure 5.1: High level system architecture

5.4 e-New Extraction and Classification Design

E-news Extraction Module BBC Data Set

Training Data
Web Crawling and

Scraping Testing Data

Extracted text

RSS feeds &

Pre-processing Module

URLs of the e- e-news

news websites articles

Tokenization

Transform case

Stop word removal

Feature Extraction
- Lemmatization

Support Vector Multinomial Random
Machine Naive Bayes Forest Ensemble

probabilities
Sport -0.12 Sport -0.23 Sport -0.24
Political -0.01 Political -0.00 Political -0.01
Sport -0.19
Entertainment -0.87| Entertainment-0.74 Entertainment -0.67
Political -0.00
Business -0.00 Business -0.00 Business -0.03
» Entertainment -0.76
Tech -0.01 Tech -0.01 Tech -0.03
Business -0.01
Tech -0.01

Get Max Probability

If Max<0.4 Category is “Other”

Else Max Categorv =News Category

Figure 5.2: E-news Extraction and Classification Module Design

44

5.4.1 E-news Extraction Level

Extraction Level

BBC

Fox news
The Guardian
CNN
— Root URLS
Daily news or RSS feeds
News First
The Island
Content Extraction

Adaderana

Figure 5.3: e-news Articles Extraction

E-news extraction phase uses state-of-the-art tools, which we could extend with
functionality to meet the defined requirements. In extraction, we use e-News websites

as data sources such as BBC, CNN, Daily News, Daily Mirror etc.

Our approach combines two advanced methodologies. At the beginning of the process,
the user provides root URLs or RSS feeds into the system. Web crawling and Extraction
are the next stages of the process. Newspaper a python library is used for scraping and
feedparser is used to read RSS-feeds. These days most of the e-news websites provide
RSS feeds. If there is RSS-feed available, we use them for scraping e-news articles.
Newspaper, an automatic e-news article scraper is used for other sites. First it scrapes
from the RSS feed, since the data is much more reliable when gathering through the
RSS feed. To feed system from RSS feeds and root URLs JSON file is used.
Therefore, it is convenient to add or remove e-news websites. Feedparser is used to load
the RSS feed of the e-news web site. Build the structure for the data by constructing
dictionary Newspaper. An article dictionary is created to store records for each e-news
article. Then Newspaper library is used to scrape the content of the links which we got
from the RSS-feed. Finally, the data object is saved to file as JSON [14].

45

v<rss xmlns:media="http://search.yahoo.com/mrss/" xmlns:dc="http://purl.org/dc/elements/1.1/" version="2.0">
v<channel>
<title>The Guardian</title>
<link>https://www.theguardian.com/uk</link>
>

vs, sport, business, comment, analysis and reviews from the Guardian, the world's leading liberal voice
on>
n-gb</language>

Guardian News and Media Limited or its affiliated companies. All rights reserved. 2018
/copyright>

Thu, 12 Apr 2018 14:16:44 GMT</pubDate>

18-04-12T14:16:442</dc: date>

e>en-gb</dc:language>

Guardian News and Media Limited or its affiliated companies. All rights reserved. 2018
</dcirights>
v

v<title>
France has proof Assad regime used chemical weapons in Syria, says Macron - live
</title>
v<link>
https://www.theguardian.com/world/1ive/2018/apr/12/uk-russia-tensions-rise-over-syria-attack-and-salisbury-poisoning-live-updates
</link>
v<description>

Figure 5.4: RSS feed of The Guardian website.

5.4.2 Pre-processing Level

The pre-processing procedure is significant in text processing as well as text
classification, because it supports, to sum up, an article effectively by removing
redundant words and confirming each word to its root form, helping the classifier to
recognize the article more easily and efficiently. In pre-processing, we remove noise
from data, which are irrelevant for our process such as advertisements, user comments,
etc. and do transform cases, text tokenization, stop word removal, word stemming and

lemmatization [21].

5.4.2.1 Transform Cases

Transform case use to convert all the news items into lowercase letters. It helps to get

an effective outcome from other pre-processing stages.

5.4.2.2 Text Tokenization

The tokenize technique breaks raw e-news strings into sentences, then breaks those
news sentences into words and punctuation, and after applies a part of speech tag. This
approach eliminates white spaces, tab, newline, etc. The token is then normalized.

NLTK toolkit is used for text tokenization [21].

46

5.4.2.3 Stop Word Removal

E-News becomes a rapidly growing communication medium where different type of
users are involved in. As a result, irrelevant textual data, abbreviations, irregular
expressions and infrequent words can be created. To reduce that noise of textual data is
essential for the accuracy of the sentiment analysis. Hence, to produce quality data set
we are removing such stop words from the web comments by using pre-compiled stop
word lists or stop word identification in NLTK package. Stop word removal is done by

default the set of English language stop words from NLTK is used.

5.4.2.4 Word Stemming

Stemming is used to find out the root or stem of a word. There are sets of rules to apply.
This is one of the most important steps in the pre-processing process. Stemming reduces
the time consuming and space required and that increase efficiency of the classifier

[21]. In our approach S-Stemmer, Lovins, Porter, and Husk Stemmer are used.

5.4.2.5 Lemmatization

Lemmatization is the procedure of looking up a single word from the range of
morphologic affixes that could be applied to specify tense, gender, etc. First need to
recognize the WordNet tag form based on the Penn Treebank tag, which is returned
from NLTK’s standard pos_tag function. If the tag with ‘N, ‘V’, ‘J” or ‘R’ then can
properly identify if it’s a noun, verb, adjective or adverb. We then use the new tag to
look up the lemma in the lexicon [25]. The WordNetLemmatizer looks up data from

the WordNet lexicon and does Lemmatization on the news items.

5.4.2 e-News Classification Level

The classification module consist of feature extraction and ensemble classification

47

5.4.2.1 Feature Extraction

TF-IDF model is used to extract features. As the dataset, we used BBS news dataset
which contains 2225 news articles with class labels. The TF-IDF contains Term
Frequency and Inverse Document Frequency. Term frequency summarizes how often
a given word appears in a document. Inverse document Frequency considers no of
documents as well. Therefore, it downscales words that appear a lot across documents.

We extracted 14788 features using TF-IDF [23].

] #docs
°97 + #docs using word

TF-IDF output a numerical binary array.

5.4.2.2 SVM

This linear classification method can be used for multiclass classification other than the
binary classification. SVM which is doing the classification using linear decision
boundaries is called as linear SMV and as well as with the little enhancement of the
algorithm SVM can be modified for nonlinear classification which uses the non-linear
decision boundaries. SVM is a supervised learning algorithm and for a given set of
training data, this algorithm generates an optimal hyper plane which can use to
categorize new data items. SVM is commonly recognized to be a more accurate

algorithm [24].

5.4.2.3 Random Forest Algorithm

Random forest algorithm is inbuilt ensemble classifier which consists of two main
stages. There are random forest creation and make prediction from the created random
forest. First randomly select “k” number of features from total “m” number of features.
(k<<m) Than determine the node “d” using the best split point among the “K” features.
Thereafter divide the node into descendant nodes using best split. After that repeat
above steps until “I” number of nodes has been created. Then create the forest by

repeating all above steps “n” number of times [24].

48

5.4.2.4 Multinomial Naive Bayes

This classifier is suitable to classify discrete features. It is a probabilistic classifier
based on text features. Naive Bayes classifier can be trained very efficiently by

requiring a relatively trivial quantity of trained data [24].

5.4.2.5 Ensemble Classification

Ensemble
Training BBC

Classifier

Examples

Figure 5.5: Ensemble Classifier

Ensemble classifier is used for our classification. It assembles several different
algorithms or several different models together to create an ensemble learner. It gives
a low error and lows over fitting than standalone classifiers. The theory of combining
classifiers is suggested as a novel direction for the improvement of the performance of
individual classifiers. Support Vector Machine (SVM), Neural Networks, Naive Bayes
classifier, Decision trees, Discriminant Analysis, Nearest Neighbours and Random
Forest algorithms are the most powerful classification algorithms. Therefore we
evaluate these techniques and construct ensemble classifier using SVM, Random Forest

algorithms, and Multinomial Naive Bayes Used individual trained models for

49

classification. First extract features from news article using TF-IDF, then feed those
features into saved model vectors. Next get probabilities from each model. Those
probabilities are used to generate weighted average probability for each class. Than
aggregate probabilities from different classes and get the maximum value class as
predicted class for particular e-news item. Below shows probabilities, for example e-

news article.

Below e-news item gives following probabilistic results
RF- Radom Forest Algorithm

MNB- Multinomial Naive Bayes Algorithm
SVM-Support Vector Machine Algorithm

Russia wins opening
World Cup match
against Saudi Arabia

The 2018 World Cup opened in spectacular fashion
as Russia defied their recent poor form to score five
past Saudi Arabia and record the biggest win by the
host nation in the opening game of a World Cup since
1934.

Stanislav Cherchesov’s team had not won in their
past seven matches and had been criticised from all
sides, including a series of barbed comments from
Russian president Vladimir Putin.

But in front of a largely partisan crowd of 78,011 at
the Luzhniki Stadium they never looked in danger
against a naive Green Falcons’ side that seemed only
too willing to gift possession to their opponents.

And there was one sour note for the home side when
Alan Dzagoev limped off with what looked like a
hamstring injury midway through the first half.

But on a night when they were under serious pressure
to deliver, Russia got their campaign up and running
in emphatic fashion.

Figure 5.6: an E-news item

P_RF + P_MNB + P_SVM
No of classifiers

Ensemble probability =

P_RF=Probability value from Random Forest Algorithm
P_MNB-= Probability value from Random Forest Algorithm
P_SVM= Probability value from Support Vector Machine

50

Ensemble those individual classifiers using probabilities.
Maximum probability value is 0.91112514 and this news is categorized as sport news.
If the maximum probability value is less than 0.4 it should categorized as “Other” news.
Since there are no prominent features for any category.
Steps:

1. Calculate individual probabilities for each classifier and for each type.

2. Calculate ensemble probabilities

3. If maximum ensemble probability>0.4 select maximum probability category as

a type of the e-news

4. FElse select “Other” as a type of the e-news

5.5 E- news Aggregation Module

Political

Cluster 1
Business

Sports processing ¥ Features
Cluster 2

Technological

Cluster 3

A

Clustern

E-news Aggregation

Other

E-news Classes

E-news Clusters

Figure 5.7: Design of the e-news aggregation component

The diagram above illustrates the design of the e-news aggregation module and each

phase of the design of aggregation module has described in detail below.

51

5.5.1 Preprocessing

In preprocessing phase, the text documents are tokenized into words. Then stop words
and punctuations are removed. Stemming is applied as the final step of preprocessing.
The main problem of Vector Space Model is high dimensionality of data. One of the

main purpose of document preprocessing is reducing the high dimensionality of data.
5.5.2 Tf-1df Features extraction

A news article is just a group of words. These group of words should be represented as
a group of numerical values to perform a clustering algorithm. Vector Space Model is
such a text representation technique that it represents set of text documents as a group

of vectors based on term frequencies.

Given a set of news article documents D = {d;, do, ..., d;, ..., dv}. Where d;is i™ article
and N is the number of news article in the data set. Every document in the dataset is
represent as a term weight vector, d; = {wis, wiz, wis, ..., wir). Where wy;is j® term weight
of i document and t is the number of unique words in the entire dataset. TF-IDF score

is calculated using the following equation and that value is taken as the term weight.

tf —idf(i,j) = tf(i.)) * idf (j)

Where #/(i,j) is the term frequency of j" term in the i document. idf{i) value is
calculated as,
df () = log (v
idf (i) =log (=
70
Where N is the number of articles in the dataset and df(j) is number of articles which

are contained j term [33].

If the term frequency of a particular term in a particular article is high, the tf-idf value
is high. That means if a term is appearing in an article very frequently that article has
high weight for that dimension. On the other hand if a term is appearing in most of the

documents in the data set, idf gives low value and tf-idf also gives low value. If a word

52

is occurred very frequently in a document but it contains in a less number of documents

in the data set tf-idf gives high score [32].

5.5.3 Density Based Spatial Clustering of Application with Noise (DBCAN)

E-news clustering is the process of grouping news articles in such a way that articles in
the same group are more similar to each other than those in other groups. DBSCAN

algorithm partition data points into dense regions separated by lower dense regions.

There are two global parameters in DBSCAN algorithm [33].
e FEPS - The maximum distance between two data points which belong to same
cluster

® MinPts - The minimum number of data points should be there in one cluster.

In DBSCAN algorithm, all the data points can be categorized into three categories.
e (Core point - If a point has number of neighbor points more than MinPts value
within its EPS range, that point is called as a core point.
® Border point - If a point has number of neighbor points fewer than MinPts value
within its EPS range but it is a neighbor point of a core, that point is called as a
border point.
e Noise point - If a point does not belong to any of above categories, that point is

called as a noise point.

There are two concept called, Density-Reachability and Density Connectivity in this
algorithm.
e Density - Reachability

o Directly density-reachable - A point q is directly density-reachable from
a point p: if p is a core point and q is in p’s EPS range.

o Density reachable - A point p is density-reachable from a point q: if there
is a chain of points P1,...,Pn with P1=q, Pn=p such that P(i+1) is directly
density-reachable from Pi.

e Density Connectivity
o Density connected - A pair of points p and density connected: if they are

density-reachable from a common point O.

53

The formal definition of a cluster can be described as follows.
For given data set D, and parameter EPS and MinPts, A cluster C is a subset of D by
satisfying two criteria,
e Maximality
o Vp,qifp € Cand if q is density-reachable from p, then also q € C
e (Connectivity

o Vp,q€C,pand q are density-connected [33]

54

5.6 E-news summarization module
The design of the e-news summarization module which depicts how each phase of the

module interacts with other phases is shown below.

T E-news cluster 1

- S

- i

Pre-processing

A

Build a sentence Feature
Extraction

similarity graph

Sentence Scoring

v
Identify the Top Ranked Sentences

y
Individual
Summaries

'

Aggregated
Summary

.

Tost Redundancy

M‘g/ Removal

Lexical Syntactic Semantic
Redundancy Redundancy Redundancy

Sentence
Ordering

Final
summary

Figure 5.8: Design of the e-news summarization component

55

The design of the summarization module consists of several phases as illustrated in the

diagram above. The design details of each phase are described below.

5.6.1 Pre-processing

Each e-news article in the cluster needs to be pre-processed before performing any type
of further processing. Pre-processing involves certain techniques like sentence
boundary identification, word tokenization, stop word elimination and stemming/
lemmatization, POS tagging etc. First the sentence boundaries from the text need to be
identified and the sentence tokenizer named “sent tokenize” tool provided by NLTK
was used here. Then the sentences need to be tokenized into words since processing
smaller units of word tokens is much more efficient than processing whole sentences.
The word tokenizer named “WhitespaceTokenizer” from NLTK was used for that
purpose. Then the stop words need to be eliminated from the extracted tokens because
these stop words do not possess any semantic meaning about the text and do not make
any sense in the further processing. So keeping these stop words in the memory is an
extra burden which reduces the performance too and hence they need to be eliminated.
There is an in-built stop words list for English language in NLTK and we can also
define our own stop words in the list. After the removal of stop words, stemming needs
to be performed in order to extract the main stem of the word. For e.g.: if we consider
the words “computerize”, “ computerization”, “compute”, “ computed” all of them
have been derived from the word “computer”. So the ultimate goal of stemming is to
extract this main stem word “computer”. Lemmatization refers to extracting the stem
word with the use of a lexical dictionary like WordNet and morphological analysis of
words which cannot be easily performed by just removing the affixes from words like
in stemming [6]. For e.g. if we want to extract the stem word of “sung” we cannot
remove affixes and find the stem word. So here we need to refer to a lexical vocabulary
and take the stem word of “sung” as “sing”. So that it is easy to handle only the main
stem of a word list derived from one particular stem rather than handling all of them
together. For this purpose one of the most popular stemming algorithms, the Porter
stemming algorithm is used. Then POS tagging also needs to be performed which
assigns the part of speech tags for each word. Then only the words which are tagged as
nouns, verbs and proper nouns are used by the summarization module considering those

terms are containing the key information.

56

5.6.2 Sentence scoring

It’s very important to identify the most salient sentences from the original documents
to be included as summary sentences. Therefore, a sentence score is given to each
sentence based on a hybrid model. The hybrid model was developed by using the
following methods combined together.

e A graph based approach — TextRank algorithm

e A feature based approach

5.6.2.1 TextRank algorithm

The graph based approach used for sentence scoring is the TextRank algorithm. The
TextRank algorithm first builds a sentence similarity graph for the original document
based on the similarities between the sentences. The sentence similarities are measured
based on some similarity measure. After evaluating various similarity measures
available in the context, cosine similarity measure was found to be more effective than
others and therefore cosine similarity measure was used to measure the sentence
similarities. Since stop words like ‘a’, ‘the’, ‘an’ are more frequently occurring in a
document, those stop words get a high importance value which add some noise.
Therefore, in order to remove that noise each word needs to be normalized with TF-
IDF [37]. Then a similarity matrix between sentences is constructed and finally each

sentence is assigned a sentence score based on the pageRank algorithm [49].

5.6.2.1.1 Sentence similarity graph

A sentence similarity graph illustrates how the sentences in the text are inter-related to
each other based on the similarities between the sentences. The nodes in the graph
represent individual sentences in the text and the edges represent the similarity between
the sentences. Here it’s important to consider how the sentence similarities are defined
when building a sentence similarity graph. There are number of similarity measures
available in the context to find the similarities between the sentences like cosine
similarity, bag-of-words model, jaccard similarity, Euclidean distance etc. [48]. A

sentence similarity graph indicates how much of common information each sentence in

57

the document has with other sentences. Different similarity measures evaluated to find
the best similarity measure when building the sentence similarity graph are described

below.
5.6.2.1.2 Bag-of-words model

The bag-of-words model first generates a vocabulary of unigrams for the entire
document which contains only the unique words of the document. Then based on the
presence of these individual words in the sentences, sentence vectors are created for
each and every sentence in the document. Usually these sentence vectors are sparse
vectors which contain lot of zero entries [48]. To overcome this problem they need to

be normalized by using TF-IDF count or any other measure.
5.6.2.1.3 Cosine similarity

The news articles in a cluster may be represented by a cosine similarity matrix where
each entry in the matrix is the similarity between the corresponding sentence pair. The
cosine similarity measure between sentences calculates the cosine of the angle between
the two sentence vectors. It can range from -1 to +1 where the value is +1 when the two
sentence vectors are exactly the same and -1 when the two sentence vectors are exactly
opposite of each other [37]. It’s required to build the sentence vectors before calculating
the cosine similarity between sentences. The sentence vectors are built by applying
word counts appearing in the sentence for each unique word in the vocabulary. Hence
the sentences are represented as a weighted vector of TF-IDF. The cosine similarity is

calculated by using the formula;

A.B

Cosine similarity(A, B) = W

Where A and B represent the sentence vectors.

58

5.6.2.1.4 Jaccard similarity

The jaccard similarity finds the similarity between two sentences based on the overlaps
of words or the words in common between the two sentences and the jaccard similarity

between sentence A and B is calculated by:

ANB
AUB

Jaccard similarity(A,B) =

After evaluating each of these similarity measures to find the sentence similarities, it
was proven that the cosine similarity gives the highest accuracy rate compared with the

others.
5.6.2.1.5 PageRank algorithm

PageRank which is the underlying technology behind the Google search engine can be
used to assign a prestige score to each sentence in the sentence similarity graph. Its
base concept is "The linked sentence is good, much more if it from many linked
sentences" [49]. In PageRank, the score of a sentence is determined depending on the
number of other sentences that link to that sentence as well as the individual scores of
the linking sentences. A high PageRank score is gained if the sentence has more linking
sentences and if the sentence is linked to sentences with high PageRank score. The

PageRank score of a sentence ‘A’ can be computed by using:

PR(T) PR(Ty)

PR(A)=(1-d)+d (T + - C(T,)

where Ty, T,, ..., T, are sentences that link to the sentence ‘A’, C (T;) is the number of
linking sentences to the sentence T; and d is the damping factor which can be set

between 0 and 1 and usually valued as 0.85.

59

5.6.2.2 Feature extraction based approach

A sentence can be represented as a set of features to give it an importance score. The
features used here are the sentence length, sentence position, presence of title words,
numerical literals count, nouns count, verbs count, named entities count, keyword
frequencies (Thematic word Feature) etc. Based on the presence of these features we

can predict whether the sentence is important to be included in the summary or not.

Sentence length feature: Sentences which are too short are considered as not important
to be included in the summary since they do not contain significant information about
the document whereas too long sentences are also not considered as important to be
included in the summary since they are very descriptive and therefore not suited as
summary sentences. Therefore a score between 0 and 1 is assigned based on how close

sentences’ length is to the ideal length.

No. of words in the sentence

Sentence length score = :
& No. of words in the longest sentence

Sentence position feature: The first sentence and the last sentence of a document, i.e.
the introductory sentence and the concluding sentence are considered as important to

be included in the summary.

Index position of the sentence in the document

Sentence position score = -
Total no. of sentences in the document

Title words feature: If the sentences contain words from the headline, then those
sentences are said to be important to be included in the summary. So a score between 0

and 1 is assigned based on the percentage of words common to the news headline.

No. of title words in the sentence

Title word score = -
No. of words in the sentence

60

Numerical literals count, Nouns count, Verbs count, and Named entities count: The
importance of the sentences are given as a percentage of the presence of the numerical

values, nouns, verbs, and named entities.

Numerical literal, NN, VB, NE score

_ Total no. of numerical values, NN, VB, NE in the sentence

Total no. of words in the sentence

Thematic word Feature: If the sentences contain frequent words then they are said to
be highly relevant to the document. TF-IDF is such a widely used measure where the
term frequency implies how often a certain word is appeared in a sentence where the
inverse document frequency implies how often that word appears in a given set of
documents. Based on the frequencies certain words may appear in a text, the most

important sentences from the text can be decided [38].

Total appearance of word in the document

Total no. of words in the document
Total no. of documents

IDF = log()

No. of documents containing the word

TF — IDF = TF = IDF

5.6.2.2.1 Normalization scheme

The requirement of a normalization scheme is highly applicable here in the feature
based approach since the individual feature scores of the sentences range from very low
values to very high values and hence the values are not evenly distributed. Therefore,
normalization by sigmoid generates feature scores of the sentences ranging from 0 to 1
which preserves an evenly distributed distribution. A very significant observation here
is that it’s very effective when the feature values are normalized when compared to the
no normalization. A normalization scheme was used for the generated feature values;
some of them based on a sigmoid function and others based on the number of sentences
in the document [38]. When taking the sigmoid function as the normalization scheme

rather than just taking the sentence length, the accuracy rate was high.

61

e Title word feature, numerical literals count, named entity count, nouns count,
verbs count and thematic word feature: These features were normalized by the
sigmoid function. There may be a chance of neglecting some small length
sentences which are important in summary generation if there is no
normalization scheme.

e Sentence Position: This feature is normalized by the number of sentences in the

document. This gives us the % position of the sentence in the document.
5.6.2.2.2 Weighted average score

Initial weights need to be assigned to the feature vector based on the importance of each
feature when generating the summary. Then based on the presence of the features in
the feature set in each sentence a weighted average score is assigned to each sentence
by accumulating all the feature scores. The sentences are scored as a weighted average

score computed as [38]:
Weighted average score of the sentence = z wf

where w is the weight assigned for each feature and f is the feature score of that
sentence. Therefore not all text features are treated with same level of importance as
some of the features have more importance or weight and some have less. Then the
final sentence scores are computed as an average score from the scores taken from the

two methods graph based method and the feature based method.
5.6.3 Summary sentences selection for summary generation

After computing the final sentence scores they are arranged in the descending order in
the sentence scores and the heap queue algorithm is used for that where the top ranked
sentences are popped out of the heap to generate the summary. The compression rate
decides how many sentences need to be extracted to generate the final summary. The
compression rate is usually 30% of the original document and summary sentences are
selected which covers that 30%. Here individual summaries are generated for each news

article in a cluster and then those individual summaries are aggregated together to form

62

an intermediate level of summary. That is an extractive summary which extracts key

information from the original set of documents themselves.

5.6.4 Post processing

After generating the intermediate level of summary by compiling all the individual
summaries in the previous step, there are some post processing tasks need to be
performed. Redundancy removal and sentence ordering are such most non-trivial post
processing tasks need to be performed in order to make the final summary more

readable and coherent.

5.6.4.1 Redundancy removal

Since sentences are extracted from multiple documents redundant sentences may
include in the summary. These redundant sentences need to be removed by identifying
similar sentences. The similarity between sentences are identified from three major
perspectives namely the syntactic similarity, lexical similarity and semantic similarity.
The syntactic similarity identifies whether the sentences follow the same structure or
not. The lexical similarity measures the similarity between sentences as a measure of
overlap of words between sentences. Some sentences may describe about the same
thing even though they use different words and phrases which needs to be identified by

finding the semantic similarity.

5.6.6.1.1 Lexical similarity

Lexical similarity between sentences are identified as overlap of words between the
sentences. In order to identify the overlap of words between sentences the jaccard
similarity measure is used. Then it is judged that the sentences are lexically dissimilar
by the condition that the jaccard similarity between the two sentences is less than the
threshold value. The jaccard similarity measures the similarity between two sentences
as the amount of word overlap normalized by the union of the sets of words present in

the two sentences.

63

5.6.6.1.2 Syntactic similarity

In order to find the syntactical similarities between sentences, the n-gram models are
used. First 2-gram models are constructed for the two sentences and the dice coefficient

between them is computed by using the formula;

21X N Y]
IX] + Y]

Dice coef ficient =
Where X and Y are separate sets of bi-grams modelled for each sentence in the sentence
pair. If a non-zero value is obtained as the dice coefficient, it’s said that there is some
kind of a syntactical relationship between the two sentences. Although the sentences
may contain some syntactical similarity, the meaning of the sentences may be not the
same. So we can’t just remove the syntactically similar sentences without finding the

semantic similarities between them.
5.6.6.1.3 Semantic similarity

Semantic similarities between sentences are identified based on the two methods
namely:
e WordNet based semantic similarity

e Word2vec based semantic similarity
5.6.6.1.4 WordNet based semantic similarity

Wordnet lexical dictionary based semantic similarity identifies the semantic similarities
between the sentences based on the synsets of each word in the sentences. First the
sentences are tokenized into words and then wordNet part of speech tags are assigned
for each token which establish the connection between four part of speech tags namely
noun, verb, adjective or adverb. Then sysnsets for each word in the sentence pair are
found which represent a specific meaning of a word. It includes the word, its
explanation, and its synonyms [50]. Finally the semantic similarity between sentences

are computed based on the semantic relatedness of the pairs of synsets by using an edge

64

counting method like path distance. The path distance is a score denoting the number

of edges in the shortest path.

5.6.6.1.5 Word2vec based semantic similarity

Word2vec model is based on the concept of word embedding where a word embedding
is a type of word representation where the words with the similar meaning to have the
same representation [51]. The word2vec model is trained by using an artificial neural
network based on the skip-gram model and the Continuous Bag of Words (CBOW)
model. The skip-gram model predicts the context of a given word and the CBOW model
predicts a number of words based on the parameter of window size when the context is
given. The pre-trained neural network by Google News was used here which generates
a word embedding of 300 features represented as a vector of real values. Therefore, the
word embeddings with approximately similar near real values for the vectors are
considered as semantically similar words. Then the cosine distances between the word
embeddings are computed to find the semantic similarity between the two sentences.
The figure 5.17 depicts that the words with approximately similar values for the word

embeddings which carry the same semantic meaning are grouped together.

65

Y Scatter Plct - 0

Word Positioning

by embedang Coordnmates

Spiit Value 3

09 10 11 12 13 14 15 18 17 18 19 20 21 22 23
Split Value 10

Figure 5.9: Semantic similarities between words based on word2vec model

Finally the semantic similarity score between sentences is computed as an average of
the two methods, the wordNet based method and the word2vec based method. If that
score is greater than the threshold value, then it’s considered that the two sentences are

semantically similar and thereby remove those redundant sentences.

5.6.4.2 Sentence ordering

A proper sentence ordering algorithm needs to be applied to make the final summary
more coherent. Therefore, the final summary sentences selected after the redundancy
removal process are arranged in the proper coherent order by using sequence matching.
The sequence ratio or the coherent score which denotes the number of primitive
operations namely the insertion, substitution and deletion need to be performed in order
to make one sentence exactly similar with the other sentence is computed in terms of

the Levenshtein edit distance. The sequence ratios are computed in both the directions

66

where the sequence ratio to make sentence 1 similar with sentence 2 and the sequence
ratio to make the sentence 2 similar with sentence 1. Then the sentences are ordered in

the manner that preserves the high sequence ratio out of the two.

67

5.7 Recommendation module

g \\
| News Agency 1 ... News Agency n ‘
\\\\ N

T— — _—) ‘ User selection ’

Domain 1 Domain 2 D?’EL” n ’

0oo |ooo| |ooo

0oo 000 D[]D N R R R R I T R N R N Update news DB & User DB
News articles DB (Categorized) AN

—_—
—‘ User query l

‘ Content based matching ’

‘ Personalization using user’s) : U1 u2 l, Un l;Nl] [N2
\ i i i) " -

profile and click frequency

l User profile News profile

Collaborative filtering ’

~ ~
i -y

Location of
current city,
country

‘ Ranked News items ’ E— @ N

p

Location aware personalization ’

Figure 5.10 Design of the recommendation module

Traditional recommendation systems consist only Content based filtering or
Collaborative filtering or both methods for recommending news for the users. That’s
not reliable and not as much as accurate for a recommendation engine. So, we propose
a Hybrid Recommendation System, consist with content-based filtering, Collaborative
filtering and Location aware personalization with user preferences. User profile is used
for tracking the user’s long-term interest and short-term interest. Individual user profile
can be divided into two parts, those are static user profile and dynamic user profile.
Static user profiles are used for storing users’ long-term interests and dynamic user

profiles are used to store users’ short-term interests. Static profiles are constructed

68

during user signup process and dynamic profiles are created when they are using the

system.

Due to vast content of information provided by the online mass media, it is necessary
to have a powerful database such as HBase. HBase is a NoSql database work as a fast
and real-time data provider. It’s important to have accurate and real-time news update
for user to read information. Click frequency of the article i and category j relationship

can be shown as follows.

clicks: = Total number of clicks made by one user on article i:

Zusers ClleSi

Zusers Z?=1 CliCkSi

fetick (i'j) =

Users input query is matched with the snipped stored inside of the article database.
When user searches on some news, and try to get the article, it helps to provide the best
content-based recommendation for the user. Related users are identified using User-
based collaborative filtering and similarities between articles are calculated using Item-

based filtering algorithm [43].

5.7.1 Location aware personalization

Current location of the user can be used to recommend interesting news to the user. The
traditional method for imparting location awareness is by using the city name as the
key term to rank the news. But, mobile users are always interested in the happening of
the neighboring cities. So, the entire location parameter (state/country) is split into
hexagonal regions. Details of hexagonal regions pertaining to a latitude, longitude, city,
state and country are maintained in region database. Based on the percentage coverage
in region database, the city/state/country news can be reported to the user. Care is also

taken to maintain information on whether the news is location specific or not in snippet

floc(i'jr lOC) = COVjy¢ * fclick(i'j)

69

database. Location awareness factor is got by including the coverage criteria in click

frequency factor as shown below:
Where fioc(i,j,loc) is the location awareness factor for article ‘i’ in category ‘j’.

COVioce is the area coverage of the city in the hexagonal cell. It is given by the formula;

areQc i

n
Zi=1(hexagon) aredjoc i

Where arealoci is the area of /oci (city i) in the hexagon. The denominator gives the

area of other cities in the hexagon. All the location details of the users are stored inside
of the location database. So, system can provide recommendation according to the

user’s current location [46].

5.8 Summary

This chapter discusses the basic components of the project and how each components
interact. It includes the design methodology of our system and the functions we

designed for each module.

70

Chapter 6

6. Implementation

6.1 Introduction

In this chapter we have described the implementations which we have done according
to the analysis and design described in previous chapters. How technology is used to
implement the solution is described further in this chapter. This chapter provides details

of implementation of each module that is stated in the design section step wise.

6.2 Implementation of Extraction module

The implementation is done using python programming language. In extraction e-news
articles should be extracted from different e-news web portals. At the beginning the
system needs URLs or RSS feeds of predefined web sites that. As a first step, seed
URLSs and RSS feeds will be given to the system as a JSON file. The format of the

JSON file shows below. This format helps to add or remove new website easily.

71

"Yahoo": {
"rss": "https://www.yahoo.com/news/rss/",
"link": "https://www.yahoo.com/news/"

}I

"cnn": {
"link": "http://edition.cnn.com/"

}I

"bbc": {
"rss": "http://feeds.bbci.co.uk/news/rss.xml",
"link": "http://www.bbc.com/"

}l

"theguardian": {
"rss": "https://www.theguardian.com/uk/rss",
"link": "https://www.theguardian.com/international"

}I

"adaderana": {
"rss": "http://www.adaderana.lk/rss.php",
"link": "http://www.adaderana.lk/"

}I

"newsfirst": {
"rgs": "https://www.newsfirst.lk/feed/",
"link": "https://www.newsfirst.lk/"

}I

"dailynews": {
"rss": "http://www.dailynews.lk/rss.xml",
"link": "http://dailynews.lk/"

Figure 6.1: Arrangement of the JSON Object

Initialize a data object which stores extracted news items.
data = {} # store our s
data['newspapers'] = {}

Figure 6.2: Creation of the data object

Newswebsites.json file contains the URLs and RSS feed of predefined e-news websites.

So then need to open the JSON file using a python script

72

oads the JSON files with newvs sites

L0aQS LOC uoUlV LI.ICS wWilll NNC¥S SLLCO

with open('newswebsites.json') as data_file:
e_news_websites = json.load(data_£file)
print (e_news_websites)

Figure 6.3: Open JSON file with News Sites

Iterate through JSON file and checking weather rss feed is provides or not. If it is
available, use FeedPaser to load RSS feeds. Then build the structure for the data by

constructing a dictionary newsPaper.

if 'rss' in value:

RoSS nX 1s proviaea 1in

1]
(
X

if 'rss' in value:
d = fp.parse(value['rss'])
print ("Downloading articles from ", e_news_site)
newsPaper = {
"rss": value['rss'],
"link": value['link'],
"articles": []

Figure 6.4: If RSS Feed is available, use FeedPaser

List of links to e-news articles taken from the RSS-feed is the variable d. It will loop
through for each entry. Check publish date field to get consistent data. If publish date
field is not available the entry will be discarded. An article dictionary is created to store

data for every e-news item.

73

for entry in d.entries:

T v - vkl & =] = - -
eck £ nub ¢ 57 ~le Dne
F CheCk 11 publisn arcicle 1 1pPpEe
T, = - ~rs s b e B = o
#F 115 1S QOne cvo X ana co Xeep
ha <,-,.-S.. :,:-“ ~rYashina

if count > LIMIT:
break
article = {}
article['link'] = entry.link
date = entry.published_parsed
article['published'] = datetime.fromtimestamp (mktime (date)).iscformat()
try:
content = Article(entry.link)
content.download()
content.parse()

Figure 6.5: Check Published Date

Newspaper library is used for scrape the content of the links. Try block will be used to

avoid failures.

try:
content = Article(entry.link)
content.download()
content.parse()

except Exception as e:

print(e)
print("continuing...")
continue

Figure 6.6: Article Downloading and Parsing

Title, text and URL of the articles will be stored in article object than it added into the

dictionary.

74

article['title'] = content.title

article['text'] = content.text
#FArticle url

article['link'] = content.url
newsPaper['articles'].append(article)

print(article)

cur_Date = datetime.now().stritime("3Y %m 3d %H &M 25.%f")
save_path = 'C:/Users/jayanid/PycharmProjects/FYP _G/e-News'
completeName = os.path.join(save_path,cur_Date + '.txt')
with open(completeName, 'w',encoding="utf-8") as the_£file:

the_file.write(article['link'])

the_file.write("\n")

the_file.write(article['title'])

the_file.write("\n")

the_file.write(article['text'])

print(count, "articles downloaded from", e_news_site, ", url: ", entry.link)
count = count + 1

Figure 6.7: Get Data using RSS Feeds

If there isn’t rss feed than else block will be executed. In here the articles will be scraped

directly from the e-news web site.

paper = newspaper.build(value['link'], memoize_articles=False)
Figure 6.8: Use URLs to scrape data

It builds the list of e-news articles found on the first page of the website. And download
the news items using newspaper library than parse those downloaded web pages to

extract the content.

try:
content.download()
content.parse()
except Excepticn as e:
print(e)
print("continuing...")
centinue

Figure 6.9: Scrape Data using URLs

75

If publish date is none article will be skipped. It will maintain the consistence of the
data. If it found 10 articles without having published date, the web page will be skipped.
print(count, " Article has date of type None...")

noneTypeCount = noneTypeCount + 1
if noneTypeCount > 10:

print ("Too many noneType dates, aborting...")
noneTypeCount = 0
break

count = count + 1

continue

Figure 6.10: Use URLs to scrape data

Then download and parse the web pages. Then extract data using newspaper library

and store them.

article = {}

article['title'] = content.title
print(article['title'])
article['text'] = content.text

aand-3 ~Ial 'mnhlschod?l = rantent nnhls ol
f#article ['published'] content.publish

newsPaper['articles'].append(article)

cur_Date = datetime.now().stritime("3Y %m 3d %H %M 25.%f")
save_path = 'C:/Users/jayanid/PycharmProjects/FYP G/e-News'
completeName = os.path.join(save_path,cur_Date + '.txt')
with open(completeName, 'w', encoding="utf-8") as the_file:

the_file.write(article['link'])

the_file.write("\n")

the_file.write(article['title'])

the_file.write("\n")

the_file.write(article['text'])

print (count, "articles downloaded from",
e_news_site, " using newspaper, url: ", content.url)
count = count + 1
nonelypeCount = 0
count = 1
data['newspapers'] [e_news_site] = newsPaper

Figure 6.11: Store data gathered from URLs to scrape data

Then save all scarped e-new article and Meta data into JSON file.

76

with open('scraped articles.json', 'w') as outfile:
json.dump (data, outfile)
except Exception as e: print(e)

Figure 6.12: Save Data into JSON file

6.3 Implementation of Classification module

Before classification, preprocessing techniques will be applied to the data. Such as

removing punctuations, stemming, transfer cases.
import re

def clean str(string):

string = re.sub(r"\'s", "", string)
string = re.sub(r"\'ve", "", string)
string = re.sub(r"n\'t", "", string)
string = re.sub(r"\'re", "", string)
string = re.sub(r"\'d", "", string)
string = re.sub(r"\'1ll", "", string)
string = re.sub(r",", "", string)
string = re.sub(r"!", " ! ", s3tring)
string = re.sub(r"\(", "", string)
string = re.sub(r"\)", "", string)
string = re.sub(r"\?", "", string)
string = re.sub(r"'", "", string)

string = re.sub(r" [*A-Za-z0-9(),!?\'\" /", " ", string)
string = re.sub(r" [0-9 \w+| 0-9 ","", string)
string = re.sub(r"\s 2, ", " ", string)

return string.strip().lower()

Figure 6.13: e-news Pre-processing

for index,value in enumerate (X):
print("processing data:",index)
X[index] = ' '.join([Word(word).lemmatize()
for word in clean_str(value).split()])

Figure 6.14: e-news articles lemmatization

77

Data will be read by the .csv file. Then, news will be added to the x array and type of
the news will be added to the Y array. To extract features we use BBC news dataset

and use TF-IDF feature extraction method.

data = pd.read csv('C:/Users/jayanid/PycharmProjects/FYP G/dataset.csv')
X = data['news'].tolist()
¥y = data['type'].tolist()

Figure 6.15: Read BBC data set

Then create TF_IDF vector from dataset to feed classifiers. Defined min dif as 2. It
will ignore terms that appear in less than 2 documents. Fit transform learn the

vocabulary dictionary and return term-document matrix.

vect = TfidfVectorizer(stop_words='english',min df=2
X = vect.fit_transiorm(x)

Y = np.array(y)

print("no of features extracted:",X.shape[l])

Figure 6.16: TF-IDF Vector Creation

Dataset divides into two as train data and testing data. 20% of data as testing data.

X_train, X test, y_train, y_test = train_test_split\
(X, ¥, test_size=0.20, random state=42)

Figure 6.17: Split Data set Into Training and Testing Datasets

Then use Random Forest Classifier to classify e-news items.

model RF = RandomForestClassifier(n_estimators=300, max depth=150,n_jobs=1)\
.fit(X_train, y_train)

y_pred RF = model RF.predict(X_test)

c_mat_RF = confusion_matrix(y_test,y_pred RF)

kappa RF = cohen_kappa_ score(y_test,y pred RF)

acc_RF = accuracy_score(y_test,y_pred RF)

print("Confusion Matrix RF:\n", c_mat_RF)

print("\nAccuracy: ",acc_RF)

Figure 6.18: Random Forest Classifier

78

Then save trained model as pickle model

pkl_filename = "pickle model RF.pkl"
with open(pkl_filename, 'wb') as file:

pickle.dump (model RF, file)

]

T Ehe ATIvven

nc wvorxing aired

m

Figure 6.19: Save Trained Random Forest Classifier

Multinomial Naive Bayes classifier.

model MNB= MultinomialNB().fit(X train, ¥ _train)
y_pred MNB = model MNB.predict (X_test)

c_mat_MNB = confusion_matrix(y_test,y_pred MNB)
acc_MNB = accuracy_score(y_test,y_pred MNB)
print("Confusion Matrix MNB:\n", c_mat_ MNB)
print ("\nAccuracy: ",acc_MNB)

Figure 6.20: Multinomial Naive Bayes Classifier

Support Vector Machine classifier.

model SVM = SVC(kernel='linear',6 probability=True).fit(X train, ¥ train)
y_pred_SVM = model_SVM.predict (X_test)

c_mat_SVM = confusion matrix(y_test,y pred_SVM)

kappa_SVM = cohen_kappa_ score(y_test,y _pred_SVM)

acc_SVM = accuracy_score(y_test,y _pred SVM)

Figure 6.21: Support Vector Machine Classifier

Ensemble classifier is created using individual classifiers such as Naive Bayes, Support

Vector Machine and Random Forest classifiers.

In here hard voting method is used to ensemble classifiers. Majority rule voting will

be used in hard Voting Classifier.

79

3
(1]

tv rule votin

LULC VOLilg.

wn
H

g jOoX L

eclfl = VotingClassifier(estimators=[('mnb', model MNB), ('rf', model RF),
('svm', model_SVM)], voting='hard')

abel

7
bt

If ‘hard’, use redicted clas

W
'

OY Major
'

eclfl = eclfl.fit(X_train, y_train)
y_pred_eclfl = eclfl.predict(X_test)

c_mat_eclfl = confusion matrix(y_test,y pred_eclfl)
kappa_eclfl = cohen_kappa score(y_test,y pred_eclfl)
acc_eclfl = accuracy_score(y_test,y pred_eclfl)
print("Confusion Matrix eclfl:\n", c_mat_eclfl)
print("\nAccuracy: ",acc_eclfl)

Figure 6.22: Hard Voting Method

The soft voting method predicts the e-news class label based on the sum of the predicted

probabilities of individual classifies.

estimators = [pickle_model MNB,pickle_model RF,pickle_model_ SVM]

def _collect_probas(X):
return np.asarray([clf.predict_proba(X_test_MNB) for clf in estimators])

def _predict_proba(X):
avg = np.average (_collect_probas(X_test_MNB), axis=0)
return avg

prob=_predict_proba (X_test_MNB)
print (prob)

Figure 6.23: Weighted Average Method

80

for z in prob:
p=max(z)
print(p)
if p<0.4:
print ("other")
v.append("cther")

else:

g=np.argmax(z)

if g == 0:
print("business")
v.append("business")

elif q == 1:
print("entertainment")
v.append("entertainment")

elif q == 2:
print("political")
v.append("political")

elif q == 3:
print("sport")
v.append("sport")

else:

print("tech")
v.append("tech")

print(np.argmax(z))
print(y)

Figure 6.24: Predict Class Labels

Could use weights parameter to adjust the contribution of the individual classifiers.

eclf3 = VotingClassifier(estimators=[('mnb', model MNB),
('rf', model RF),
('svm', model_SVM)],
voting='soft', weights=[2,1,1], flatten_transiorm=True)
eclf3 = eclf3.fit(X_train, y_train)

yv_pred_eclf3 = eclf3.predict(X_test)

c_mat_eclf3 = confusion_matrix(y_test,y_pred_ecli3)
kappa_eclfi3 = cohen_kappa score(y_test,y pred_ecli3)
acc_eclf3 = accuracy_score(y_test,y pred ecli3)
print("\nAccuracy: ",acc_eclf3)

Figure 6.25: Ensemble classifier considering weight parameter

81

6.4 Implementation of the e-news Aggregation Module

The implementation of e-news aggregation can be divided into three parts. Those are
preprocessing, features extraction and clustering. Python nltk, sklearn, gensim

packages have used for implementing the e-news aggregation module.

6.4.1 Preprocessing

As the first step of preprocessing stop words and punctuations are removed.

stopWordsAndPunctuatoin = set(stopwords.words('english')).union(set('\n'

"\rUU\ETT\ " \u2013 " '\u2014" T\U@BA T gt TGt gt g e Ter 1
Lt I D R A P TR ARSI R SN (B
AL AT AT g g ety aunten(set([T-- ", s, T, T Tel))

Figure 6.26: Stop words elimination

After that stemming is applied.

ps = PorterStemmer()
if w not in stopWordsAndPunctuatoin:
wordsFiltered.append(ps.stem(w))

Figure 6.27: Porter’s stemming algorithm

6.4.2 Features Extraction

For features extraction, three different feature models were implemented. Those are
LDA model, Doc2vec model and Tf-idf model. But Tf-idf feature model gave higher
accuracy than other two models. LDA model was implemented using gensim python
library.
dictionary = corpora.Dictionary(preprocessedDocs.values())
1lda = models.LdaModel(bow_corpus.values(), num_topics=no_topics,
id2word=dictionary, # mapping word IDs to words
update_every=1, update topics after every (update_every*chunksize) docu

#
chunksize=50, # number of documents load to the memory at a time
passes=10) # number of iterations

Figure 6.28: LDA model

Doc2vec model was implemented using gensim python library.

82

class LabeledLineSentence(object):
def init_ (self, documents):
self.documents = documents
def __iter__ (self):
for key, value in self.documents.items():
yield LabeledSentence(value, [str(key)])

def documentEmbedding(preprocessedDocs):
it = LabeledLineSentence(preprocessedDocs)

model = Doc2Vec(size=300, window=10, min_count=1, alpha=0.025, min_alpha=0.025)
model.build_vocab(it)
for epoch in range(10):
model.train(it,total_examples=model.corpus_count,epochs=model.iter)
model.alpha -= 0.002
model.min_alpha = model.alpha
model.train(it, total_examples=model.corpus_count, epochs=model.iter)

Figure 6.29: Doc2vec model

Tf-idf model was implemented using sklearn python library.

vectorizer = TfidfVectorizer()
vector = vectorizer.fit_transform(preProcessedDocs.values())

Figure 6.30: Tf-idf model

6.4.3 Clustering

For clustering, three different clustering algorithms were implemented. Those are K-
means algorithm, Affinity propagation algorithm and DBSCAN algorithm. But
DBSCAN algorithm gave higher accuracy than other two algorithms.

K-means algorithm, Affinity propagation algorithm and DBSCAN algorithm were

implemented using sklearn python library.

db = KMeans(n_clusters=no_ofClusters, init='k-means++', max_1iter=100, n_init=1)
db.fit_predict(vector)

Figure 6.31: k-means clustering algorithm
db = AffinityPropagation(affinity="'euclidean', damping=0.5)
db.fit_predict(vector)

Figure 6.32: Affinity propagation algorithm

83

db=DBSCAN(eps=1.15, min_samples=2, metric='euclidean',algorithm="'auto', n_jobs=1)
db.fit_predict(vector)

Figure 6.33: DBSCAN algorithm

6.5 Implementation of the summarization module

In the summary generation process the most salient sentences are extracted by assigning
a sentence score to each and every sentence of the input documents. A hybrid approach
is applied to assign sentence scores; a feature based approach and a graph based

approach combined together as described in the previous chapters.

6.5.1 Implementation of the graph based approach for sentence scoring

The TextRank algorithm which is one of the famous graph based approaches was
implemented here. It first constructs a sentence similarity graph by considering the
sentence similarities. After evaluating various similarity measures described in earlier
chapters, the cosine similarity measure was used for the implementation purposes since
it showed higher accuracy rate. Before computing the cosine similarities between
sentences we need to generate sentence vectors. Sentence vectors are generated by

computing feature weights (e.g.: Term frequency).

84

def sentence_similarity(sentl, sent2, stopwords=None):
if stopwords is None:
stopwords = []

sentl
sent2

[w.lower() for w in sentl]
[w.lower() for w in sent2]

all words = list(set(sentl + sent2))

vectorl = [0] * len(all_words)
vector2 0] * len(all_words)

]
—

2 h1i1l1Ad Fhe vertar for Fhe firetr cantence

for w in sentl:
if w in stopwords:
centinue
vectorl[all_words.index(w)] += 1

£ h1i1lAa Fhe vertar foar Fhe seErconc i cantan~a

for w in sent2:
if w in stopwords:
continue
vector2[all_words.index(w)] += 1

return cosine_similarity(vectorl, wvector2)
Figure 6.34: Generation of sentence vectors

Then the cosine similarity is calculated for the pairs of sentence vectors which represent
the sentences. This gives a measure to predict how much each sentence in the document
is similar to other sentences in the document. It calculates the cosine similarity as 1’ if
the sentences are identically similar to each other and as ‘-1’ when the sentences are
exactly opposite of each other or else any value between -1 and +1 in all the other cases
based on the similarities between them. In other terms the sentences are said to be
similar if the cosine distance is ‘0’. Therefore when the cosine distance is less, it implies
that the similarity between the sentences is high. I.e. Cosine similarity is equal to (1-

cosine distance).

def cosine_similarity(a, b):
dot_product = np.dot(a, b)
norm a = np.linalg.norm(a)
norm b = np.linalg.norm(b)
return dot_product / (norm a * norm b)

Figure 6.35: Cosine similarity calculation

85

Then a sentence similarity matrix is generated based on the similarities between the
sentences and it needs to be converted to a graph to apply the PageRank algorithm to
assign sentence scores. When building the sentence similarity matrix the values need to

be normalized with TF-IDF to remove noise from the stop words.

def build similarity matrix(sentences, stopwords=None):

np.zeros((len(sentences), len(sentences)))

W oW
]

for idxl in range(len(sentences)):
for idx2 in range(len(sentences)):
if idxl == idx2:
centinue

S[idx1] [idx2] = sentence_similarity(sentences[idxl], sentences[idx2], stop_words)

for idx in range(len(S)):
S[idx] /= S[idx].sum()

return S

Figure 6.36: Generation of sentence similarity matrix

The ultimate result of this approach is returning the PageRank scores for each sentence
in the original set of documents. The inbuilt pagerank function from the networkx
library was used to compute pageRank scores for each sentence.
def textrank(document):
sentences = sent_tokenize (document)
S5 = build_similarity matrix(sentences, stop_words)
nx_graph = nx.from numpy matrix(S)

sentence_scores = nx.pagerank(nx_graph)
return sentence_scores

Figure 6.37: Application of the pageRank algorithm for the sentence similarity graph

6.5.2 Implementation of the feature based approach for sentence scoring

The feature based method assigns a weighted average score for each sentence based on
the availability of a set of pre-defined features in the sentences. These features include
the sentence position, sentence length, availability of title words, named entities count,

nouns count, verbs count, numerical literals count, key word frequencies etc.

86

The sentence position feature assigns each sentence a score based on the position of
each sentence in the original document. So it assigns high scores for the sentences
which are at the first place of the document or the introductory sentences and the

sentences which are at the end of the document or the concluding sentences.

def sentencePositionFeature(i, size):

1mhaer AF cantans

relative_position = i / size

if 0 < relative_position <= 0.1:
return 0.17

elif 0.1 < relative_position <= 0.2:
return 0.23

elif 0.2 < relative_position <= 0.3
return 0.14

elif 0.3 < relative_position <= 0.4
return 0.08

elif 0.4 < relative_position <= 0.5
return 0.05

elif 0.5 < relative_position <= 0.6
return 0.04

elif 0.6 < relative_position <= 0.7
return 0.0¢

elif 0.7 < relative_position <= 0.3
return 0.04

elif 0.8 < relative_position <= 0.9
return 0.04

elif 0.9 < relative_position <= 1.0:
return 0.15

else:
return 0

Figure 6.38: Calculation of the sentence position score

The sentence length feature assigns each sentence a score based on the relative length
of the sentence compared relatively to an ideal length of a sentence. So the sentences

which are too short and sentences which are too long are excluded from the summary.
ideal = 20.0
def lengthFeature (sentence):

len _diff = math.fabs(ideal - len(sentence))
return len_diff / ideal

Figure 6.39: Calculation of the sentence length score

87

The title word feature checks for the availability of words in the news headline in each
sentence and assigns high scores for the sentences which contain words in the headline.
It assigns a score between 0 and 1 based on the percentage of words that are common
in the sentences with the headline.

def getTitleScore(title, sentence):

titleWords = removeStopWords(title)
sentenceWords = removeStopWords (sentence)

matchedWords = [word for word in sentenceWords if word in titleWords]
if (len(title) '= 0):

titleScore = len(matchedWords) / (len(title) * 1.0)
else:

titleScore = 0.0

return titleScore

Figure 6.40: Calculation of the title score

Based on the number of numerical literals, nouns, verbs, named entities in each
sentence a score is assigned to them. These feature scores are normalized by sigmoid
function in order to get feature scores ranging from 0 to 1 and thereby having an evenly

distributed contribution.

def nounFeature (sentence):
tagged = pos_tag(sentence) # penn tree bank
counts = Counter(tag for word, tag in tagged)
nouns = [word for word, pos in tagged \
if (pos == 'NN' or pos == 'NNP' or pos == 'NNS' or pos == 'NNPS')]

if ((len(sentence) - 1) != 0):

nn = len(nouns) / (len(sentence) - 1)

noun_score sigmoid(nn)
else:

noun_score = 0.0

return noun_score

Figure 6.41: Calculation of the noun score

88

def numericalFeature (sentence):
b =[]
for element in sentence:
b.append(len(element))
numbers = [int(s) for s in sentence if s.isdigit()]
if ((len(sentence) - 1) !'= 0):
n = len(numbers) / (len(sentence) - 1)
numeric_score = sigmoid(n)
else:
numeric_score = 0.0

return numeric_score

Figure 6.42: Calculation of the numerical literal score

def verbFeature (sentence):

tagged pos_tag(sentence)
Counter(tag for word, tag in tagged)
verbs = [word for word, pos in tagged \

counts

if (pos == 'VBD' or pos == 'VBG' or pos == 'VBN' or pos == 'VBP')]
if ((len(sentence) - 1) !'= 0):
v = len(verbs) / (len(sentence) - 1)
verb_score = sigmoid(v)

else:
verb_score = 0.0

return verb_score

Figure 6.43: Calculation of the verb score

def properNounFeature (sentence):
tagged = pos_tag(sentence)
properNouns = [word for word, pos in tagged \

if (pos == 'NNP' or pos == 'NNPS')]
if ((len(sentence) - 1) !'= 0):
p = len(properNouns) / (len(sentence) - 1)
properNoun_score = sigmoid(p)

else:
properNoun_score = 0.0
return properNoun_score

Figure 6.44: Calculation of the proper noun score

The thematic word feature assign sentence scores based on the term frequencies which

are the word counts of each word in the sentence and thereby identifying the most

89

frequent words which are referred to as keywords of the text. Before identifying the
keywords of the document, the stop words which do not have any semantic meaning
need to be removed. Because these stop words are more frequently appearing in the
documents and they should not be identified as key words. So prior to the identification
of key words these stop words need to be eliminated.
def getKeywords(text):

text = removePunctations(text)

words = splitWords(text)

words = removeStopWords (words)
uniqueWords = list(set(words))

keywords
keywords

[{'word': word, 'count': words.count(word)} for word in uniqueWords]
sorted (keywords, key=lambda x: -X['count'])

return (keywords, len(words))

def getTopKeywords (keywords, wordCount):
for keyword in keywords:
articleScore = 1.0 * keyword['count'] / wordCount
keyword['totalScore'] = articleScore * 1.5

return keywords

Figure 6.45: Calculation of the key word frequencies

Then based on the individual scores obtained for each feature the final aggregated score
is calculated for each of the sentences. The weights are assigned for the features in the
feature vector based on their relative importance when generating the summary. It has
proven that the title score and the key word frequencies have a higher weightage or
importance in the generation of summary and those feature are assigned higher weights.
Then final sentence scores are calculated as a weighted average score of sum of the
products of individual feature scores and their weights. Thereby the final sentence

scores of each sentence in the original documents are returned by the function.

90

def score(sentences, titleWords, topKeywords):

keywordList = [keyword['word'] for keyword in topKeywords]

senSize = len(sentences)

ranks = []

for i, sentence in enumerate (sentences):
sent = removePunctations(sentence)
words = splitWords(sent)
sbsFeature = sbs(words, topKeywords, keywordList)
dbsFeature = dbs(words, topKeywords, keywordList)
titleScore = getTitleScore(titleWords, words)
lengthScore = lengthFeature (words)
sentencePositionScore = sentencePositionFeature(i, senSize)
keyWordFrequency = (sbsFeature + dbsFeature) / 2.0 * 10.0
numericScore = numericalFeature (words)
nounScore = nounFeature (words)
verbScore = verbFeature (words)
properNounScore = properNounFeature (words)

veichted averace of scores £rom

totalScore = (
titleScore * 1.5 + lengthScore * 0.5 + sentencePositionScore * 1.0 +
keyWordFrequency * 2.0 + numericScore * 1.0 + nounScore * 1.0 +
verbScore * 1.0 + properNounScore * 1.0
) / 8.0
ranks.append(totalScore)

return ranks

Figure 6.46: Calculation of the weighted average score

Then the final sentence scores are calculated as an average value of scores taken from
the above two approaches. Then the system selects the top ranked sentences to form
individual summaries for the news articles in the cluster. The number of top ranked
sentences depends on a compression rate which is usually selected as 30% of the
original text. Finally those individual summaries are compiled together to form an

intermediate level of summary.

91

def summarize (orig_text, title):
summaries = []
sentences = sent_tokenize (orig_text)

textRank scores = textRank_cosineSimilarity.textrank(orig_text).values()
print ("textRank based scores")
print (textRank_scores)

feature_Based_Scores = Feature_base.FeatureBasedScores(title, orig_text)
print ("feature based scores")
print (feature_Based_Scores)

Final_Sentence_Scores = [sum(n) / 2 for n in

zip(* [textRank_scores, feature_Based Scores])]
print("Final sentence scores")
print(Final_Sentence_Scores)

summary length = round(len(sentences) * 0.3)
sorted_sentences = sorted(((Final_Sentence_Scores[i], s) for i, s in enumerate(sentences)),
reverse=True)

for sen in sorted_sentences:
summaries.append(sen[l])

result = summaries([:summary length]
print ("Individual summary")
print(result)

return result

Figure 6.47: Aggregated individual level of summary generation

6.5.5 Redundancy removal

After the intermediate level of summary is created by combining the individual
summaries, there are some post processing tasks need to be applied to make the final
summary a more readable and coherent one. The redundancy removal is such a very
important post processing task needs to be performed. Since we are taking the top
ranked sentences from each e-news article in the cluster and aggregate them to form the
final summary, there may be redundant sentences in the final summary. The reason for
that is different e-news articles may use different words and phrases to describe about
the same thing. Redundancies of the sentences are removed by identifying similar
sentences in three perspectives namely the syntactic similarity, lexical similarity and

semantic similarity.

92

6.5.5.1 Lexical similarity

By

finding the lexical similarities between sentences we found the total overlaps

between vocabularies of the sentences. So the jaccard similarity score between

sentences is calculated which is based on the total overlaps between words. The

overlaps between words were measured based on the overlaps between word tokens,

word stems and word lemmas and final lexical similarity was gained as an average of

these three values. If the lexical similarity is greater than a threshold value defined as

0.7

, the sentences were considered as lexically similar and thereby remove the

redundant sentences.

def

def

def

token_set_match(a, b):

tokens_a = [token.lower().strip(string.punctuation) for token in nltk.word_tokenize(a) \
if token.lower().strip(string.punctuation) not in stopwords]

tokens_b = [token.lower().strip(string.punctuation) for token in nltk.word_tokenize(b) \
if token.lower().strip(string.punctuation) not in stopwords]

ratio = len(set(tokens_a).intersection(tokens_b)) / float(len(set(tokens_a).union(tokens_b)))
return ratio

Figure 6.48: Jaccard similarity measurement for word tokens

stem_set_match(a, b):

tokens_a = [token.lower().strip(string.punctuation) for token in nltk.word tokenize(a) \
if token.lower().strip(string.punctuation) not in stopwords]

tokens_b = [token.lower().strip(string.punctuation) for token in nltk.word_tokenize(b) \
if token.lower().strip(string.punctuatiocn) not in stopwords]

stems_a = [stemmer.stem(token) for token in tokens_a]

stems_b = [stemmer.stem(token) for token in tokens_b]

ratio = len(set(stems_a).intersection(stems_b)) / float(len(set(stems_a).union(stems_b)))
return ratio

Figure 6.49: Jaccard similarity measurement for word stems

lemma_set_match(a, b):
pos_a = map(get_wordnet_pos, nltk.pos_tag(nltk.word tokenize(a)))

pos_b = map(get_wordnet_pos, nltk.pos_tag(nltk.word_tokenize(b)))

lemmae_a = [lemmatizer.lemmatize (token.lower().strip(string.punctuation), pos) for token, pos in pos_a \
if pos == nltk.wordnet.NOUN and token.lower().strip(string.punctuation) not in stopwords]

lemmae b = [lemmatizer.lemmatize(token.lower().strip(string.punctuation), pos) for token, pos in pos_b \
if pos == nltk.wordnet.NOUN and token.lower().strip(string.punctuation) not in stopwords]

ratio = len(set(lemmae_a).intersection(lemmae_b)) / float(len(set(lemmae_a).union(lemmae_b)))
return ratio

Figure 6.50: Jaccard similarity measurement for word lemma

93

6.5.5.2 Syntactic similarity

Syntactic similarity between sentences identify sentences which have the same
syntactic relationships. To find the syntactic relationships between the sentences, 2-
gram models are modelled for the sentence pair and the dice coefficient is computed
between them. If the dice coefficient is a non-zero value, it’s decided that the two

sentences have some syntactic relationship.

def dice_coefficient(a, b):
if not len(a) or not len(b): return 0.0
if len(a) == 1: a=a + u'.'
if len(b) == 1: b=Db +u'.’

a_bigram list = []
for i in range(len(a) - 1):
a_bigram list.append(a[i:i + 2])
b_bigram list = []
for i in range(len(b) - 1):
b_bigram list.append(b[i:i + 2])

a_bigrams = set(a_bigram list)

b_bigrams set (b_bigram list)

overlap = len(a_bigrams & b_bigrams)

dice_coeff = overlap * 2.0 / (len(a_bigrams) + len(b_bigrams))

return dice_coeff

Figure 6.51: Calculation of the dice coefficient

But the major concern here is although the sentences are syntactically similar the
meaning of the sentences may be different. So the semantic similarity between

sentences also needed to be found.

6.5.5.2 Semantic similarity

The algorithm to find the semantic similarities between sentences used two main

methods; wordNet based semantic similarity and word2vec based semantic similarity.

The implementation details of each of the methods are described below.

94

6.5.5.2.1 Implementation of the wordNet based semantic similarity

This approach computes the level of semantic similarity between sentences based on
the synsets given by the wordNet lexical dictionary for each word in the sentences. It
first assigns WordNet part of speech tags; i.e. either noun, verb, adjective or adverb.
Then WordNet based synsets are assigned for each tagged word in the sentence pair.
Then it compares pair by pair synsets and computes the path distance between the
synsets. Finally all the path distances are accumulated together to find the final semantic

similarity between sentences based on wordNet.

def sentence_similarity(sentencel, sentencel):

sentencel = pos_tag(word_tokenize (sentencel))

sentence2 = pos_tag(word_tokenize (sentencel))

synsetsl = [tagged_to_synset(*tagged_word) for tagged_word in sentencel]
synsets2 = [tagged_to_synset(*tagged_word) for tagged word in sentencel]
synsetsl = [s33 for 33 in synsetsl if s3]

synsets2 = [33 for s3 in synsets2 if s3]

score, count = 0.0, 0

arr_simi_score = []

for synl in synsetsl:
for syn2 in synsetsa:
simi_score = synl.path_similarity(syn2)
if simi_score is not None:
arr_simi_score.append(simi_score)
best = max(arr_simi_score)
if best is not Nene:
score += best
count += 1

score /= count
return score

Figure 6.52: WordNet based semantic similarity measurement

6.5.5.2.1 Implementation of the word2vec based semantic similarity

In this approach the level of semantic similarity between sentences are found by

modelling word embeddings by using a pre-trained artificial neural network. For the

95

implementation purposes, we used Google News’s pre-trained neural network trained
by using its data set which contains around about 100 billion words. Based on this pre-
trained neural network, word embeddings are modelled for each word in the sentence
pair. Then considering pairs of word embeddings, the cosine distance between those
word embeddings are calculated. Finally all these cosine distances are summed up to

find the word2vec based semantic similarity between the sentences.

model = gensim.models.KeyedVectors.load word2vec format('GoogleNews-vectors-negative300.bin', binary=True, limit=5000)
index2word_set = set(model.wv.index2word)
def avg_feature_vector(sentence, model, num features, index2word set):
words = sentence.split()
feature_vec = np.zeros((num features,), dtype='float32')
n_words = 0
for word in words:
if word in index2word_set:
n_words += 1
feature_vec = np.add(feature_vec, model[word])
if (n_words > 0):
feature_vec = np.divide (feature_vec, n_words)
return feature_vec

def word2vecSim(sl, s2):
sl_afv = avg_feature_vector(sl, model=model, num features=300, index2word_set=index2word_set)

s2_afv = avg_feature_vector(s2, model=model, num features=300, index2word_set=index2word_set)
sim = 1 - spatial.distance.cosine(sl_afv, s2_afv)

return sim

Figure 6.53: Word2vec based semantic similarity measurement

Finally the overall semantic similarity is measured by taking the average value of two
similarity scores taken from the wordNet based method and word2vec based method.
If that final semantic similarity score is greater than the threshold value defined as 0.7,
it’s proven that those sentences are semantically similar and thereby remove those

redundant sentences.

96

def semantic_similarity(sentencel, sentence2):
similarity wordNet = (sentence_similarity(sentencel, sentence2) + sentence_similarity(sentence2, sentencel)) / 2
similarity word2vec = word2vecSemanticSimilarity.word2vecSim(sentencel, sentencel2)
semantic_simlarity score = (similarity wordNet + similarity word2vec) / 2
return semantic_simlarity_ score

def removeReduandancy(sentences):
for sentence in sentences:

target_sentence = sentence
index = sentences.index(sentence)

for sentence in sentences[(index + 1):]:
similarity_score = semantic_similarity(target_sentence, sentence)

if (similarity score > 0.7):
sentences.remove (sentence)
return sentences

Figure 6.54: Semantic redundancy elimination
6.5.6 Sentence ordering

After removing the redundant sentences from the intermediate level of summary, it’s
very important to arrange the final summary sentences in the proper coherent order.
Otherwise it will reduce the readability. So, the sentence ordering was performed by
sequence matching. The sequence ratio is computed which is kind of a coherence score
in both the directions for a given sentence pair and the sentences are arranged in the
order which preserves the highest sequence ratio between the sentences. The
SequenceMatcher from the difflib library was used for sequence matching. Then the
final summary is displayed to the user after arranging the summary sentences in the

proper coherent order.

97

from difflib import SequenceMatcher

def seq Matching(sentences):
n = len(sentences)

for i in range(n):
for j in range(0, n - i - 1):

sl = SequenceMatcher(lambda x: x = " ",
sentences([j],
sentences[] + 1])

32 = SequenceMatcher(lambda x: x == " ",
sentences([]j + 1],
sentences([j])

seql sl.ratio()
seq2 s2.ratio()
if (seg2 > seql):
sentences[j], sentences[]j + 1] = sentences([] + 1], sentences[]]

return sentences

Figure 6.55: Sentence ordering using sequence matching

6.6 Implementation of the recommendation module

The implementation details of the hybrid recommendation module are described below.
The individual implementation details of each individual recommendation method i.e.
the implementation details of content based filtering, collaborative filtering, popularity

model are also discussed.

6.6.1 Popularity model

A common (and usually hard-to-beat) baseline approach is the Popularity model. This
model is not actually personalized — it simply recommends a user the most popular
items that the user has not previously consumed. As the popularity accounts for the
“wisdom of the crowds”, it usually provides good recommendations, generally
interesting for most of the people. The main objective of a recommender system is to
leverage the long-tail items to the users with very specific interests, which goes far

beyond this simple.

98

4P ammrikza +he

) g most
gLVILVULCo LT VoL
Y

narm lar 3 Fama
populdr 1CUEmS

item popularity df = interactions full df.groupby('contentId') ['eventStrength'].sun().sort values(ascending=Fals
item popularity df.head(10)

Figure 6.56: Identification of most popular items

class PopularityRecommender:
MODEL NAME = 'Popularity’

def init (self, popularity df, items df=None):
self.popularity df = popularity df
self.items df = items df

def get model name(self):
return se1f.MODEL NAME

def recommend items(self, user id, items to ignore=[], topn=10, verbose=False):

4 DerAammanA Fhe mAare nAarlar IFeme Fhat +} near haen't eczan st
¢ RCCOMMenA LS MoIc populal LLCHS LidL LOC USCl [aoll L oCCll

recomnendations df = self.popularity df [~self.popularity df['contentId'].isin(items to ignore)] \
.sort values('eventStrength', ascending = False) \
.head (topn)
if verbose:
if self.items df is None:
23 raise Exception('"items df" is required in verbose mode')
recommendations df = recommendations df.merge(self.items df, how = 'left’,
26 left on = 'contentId',

right on = 'contentId') [['eventStrength', 'contentId

29 return recommendations df

Figure 6.57: Popularity model based recommendation

6.6.2 Content-based Filtering Model

Content-based filtering approaches leverage description or attributes from items the

user has interacted to recommend similar items. It depends only on the user’s previous

99

choices, making this method robust to avoid the cold-start problem. It is simple to use

the raw text to build item profiles and user profiles.

Here we are using a very popular technique in information retrieval (search engines)
named TF-IDF. This technique converts unstructured text into a vector structure, where
each word is represented by a position in the vector, and the value measures how
relevant a given word is for an article. As all items will be represented in the same

Vector Space Model it is easy to compute similarity between articles.

stopwords list = stopwords.words('english') + stopwords.words('portuguese’)

Qlllo Q@ WLVKTL WUVOC weblUio ol Lo JUVUV, CULLVOCW UV LIUC HGlll ULULGllo Gl VIULdillo LVULK LI LT

vectorizer = TfidfVectorizer(analyzer='word',
ngran range=(1, 2),
min df=0.003,
max df=0.3,

max _features=3000,

g stop words=stopwords list)

item ids = articles df['contentId'].tolist()

tfidf matrix = vectorizer.fit transform(articles df['title'] + " + articles df['text'])
tfidf feature names = vectorizer.get feature names()

tfidf matrix

Figure 6.58: Modelling the vector space model

To model the user profile, we take all the news profiles the user has interacted and
average them. The average is weighted by the interaction strength, in order words, the
articles the user has interacted the most (e.g. Liked or commented) will have a higher

strength in the final user profile.

100

def get item profile(item id):
idg = item ids.index(item id)
item profile = tfidf matrix[idx:idx+l]

return item profile

def get item profiles(ids):
item profiles list = [get_item profile(x) for x in ids]
item profiles = scipy.sparse.vstack(item profiles list)
return item profiles

def build users profile(person id, interactions indexed df):
interactions person df = interactions_indexed df.loc[person id]

user_item profiles = get_item profiles(interactions person df(['contentId'])

user_item strengths = np.array(interactions person df['eventStrength']).reshape(-1,1)

#Heighted average of item profiles by the interactions strength

user_item strengths weighted avg = np.sum(user_item profiles.multiply(user item strengths), axis=0) / mp.st
user_profile norm = sklearn.preprocessing.normalize (user item strengths weighted avg) |

return user profile norm

def build users profiles():
interactions indexed df = interactions full df[interactions full df['contentId'] \
.isin(articles df['contentId'])].set_index('personId’)
user profiles = {}
for person id in interactions_indexed df.index.unique():
user_profiles(person id] = build users profile(person id, interactions indexed df)

return user profiles

Figure 6.59: Building user profiles

101

class ContentBasedRecommender:
MODEL NAME = 'Content-Based'

def _init (self, items df=Nome):
self.item ids = item ids
self.items df = items df

def get model name(szlf):
return self.MODEL NAME

def get similar items to user profile(self, person id, topn=1000):
#Computes the cosine similarity between the user profile and all item profiles
cosine similarities = cosine similarity(user profiles([person id], tfidf matrix)
#Gets the top similar items

similar indices = cosine similarities.argsort().flatten()[-topn:]

#Sort the similar items by similarity

similar items = sorted([(item ids[i], cosine similarities[0,i]) for i in similar indices], key=lambda

return similar items

Figure 6.60: Content based recommendation

def recommend items(self, user id, items to ignore=[], topn=10, verbose=False):
similar items = self. get similar items to user profile(user id)
#Ignores items the user has already interacted

similar items filtered = list(filter(lambda x: x[0] not in items to ignore, similar items))

recommendations df = pd.DataPrame(similar items filtered, columns=['contentId', 'recStrength']) \

.head (topn)

if verbose:
if self.items df is None:

raise Exception('"items df" is required in verbose mode')
recommendations df = recommendations df.merge(self.items df, how = 'left’,

left on = 'contentId',

right on = 'contentId') [['recStrength', 'contentId',

return recommendations df

Figure 6.61: Recommendation of items based on content based filtering

102

6.6.3 Collaborative Filtering Model

Collaborative Filtering (CF) has two main implementation strategies:

Memory-based: This approach uses the memory of previous users interactions
to compute users similarities based on items they’ve interacted (user-based
approach) or compute items similarities based on the users that have interacted
with them (item-based approach). A typical example of this approach is User
Neighborhood-based CF, in which the top-N similar users are selected and used
to recommend items those similar users liked, but the current user have not
interacted yet.

Model-based: In this approach, models are developed using different machine
learning algorithms to recommend items to users. There are many model-based
CF algorithms, like neural networks, Bayesian networks, clustering models, and
latent factor models such as Singular Value Decomposition (SVD) and,

probabilistic latent semantic analysis.

103

class CFRecommender:
MODEL NAME = 'Collaborative Filtering'

def _init (self, cf predictions df, items df=None):
self.cf predictions df = cf predictions df
self.items df = items df

12 def get model name(self):
return self.MODEL NAME

def recommend items(self, user id, items_to_ignore=[], topn=10, verbose=False):

¢ GEU anQ sSort thne user' s preqicrions

sorted user predictions = self.cf predictions df[user_id].sort values(ascending=False) \

.reset_index().rename (columns={user_id: 'recStrength'})

& # Recommena thne Nignest preqQicteq rating movies thnat tine user nasn v seen ye

recommendations df = sorted user predictions[~sorted user predictions(['contentId'].isin(items_to_ignor
22 .sort_values('recStrength', ascending = False) \
23 .head (topn)

if verbose:
25 if self.items df is None:

2 raise Exception('"items df" is required in verbose mode')

28 recommendations df = recommendations df.merge(self.items df, how = 'left’,
29 left on = 'contentId',

right on = 'contentId') [['recStrength', 'contentId',

32 return recommendations_df

Figure 6.62: Collaborative filtering recommender

6.6.4 Hybrid Recommender Model

In our approach, we combine Collaborative Filtering and Content-based Filtering
algorithms. Then it’ll provide more accurate recommendations. In fact, hybrid methods
have performed better than individual approaches in many studies and have being
extensively used by researches and practice works. We used in our hybridization
method, by only multiply the CF score with the Content-based score and ranking by

resulting score.

104

53

class HybridRecommender():

print ("*******Hybrid Recommendation for the User***xxkiin)

MODEL NAME = 'Hybrid’

def init (self, cb_rec _model, cf rec model, items df):
self.cb_rec_model = cb_rec model
self.cf rec model = cf rec model
self.items df = items df

def get model name(self):
return se1f.MODEL NAME

Figure 6.63: Hybrid recommender model

def recommend items(self, user id, items to_ignore=[], topn=10, verbose=False):

#Getting the top-1000 Content-based filtering recommendations

cb recs df = self.ch rec model.recommend items(user id, items to ignore=items to ignore, verbosesverbo
topn=1000) . rename (columns={'recStrength': 'recStren

#Getting the top-1000 Collaborative filtering recommendations

cf recs df = self.cf rec model.recommend items(user_id, items to ignore=items to ignore, verbose=verbo

topn=1000) . rename (columns={'recStrength': 'recStren

recs df = cb _recs df.merge(cf recs df,
how = 'inner',
left on = 'contentId',
right on = 'contentId')
#Computing a hybrid recommendation score based on CF and CB scores

recs df['recStrengthHybrid'] = recs df['recStrengthCB'] * recs df['recStrengthCF']

40 T mEA enAatrsAana her her A er -
#5orting recommendations by hybrid score

recommendations df = recs df.sort values('recStrengthHybrid', ascending=False).head(topn)

if verbose:
if self.items df is None:

raise Exception('"items df" is required in verbose mode')
recommendations df = recommendations df.merge(self.items df, how = 'left’,
left on = 'contentId’,

right on = 'contentId') [['recStrengthHybrid', 'conte)

return recommendations df

Figure 6.64: Recommendations of the hybrid model

105

RECOMMENDED NEWS

MORE +

10 Modern Software Over-
Engineering Mistakes

10 Modern Software Over-Engineering
Mistakes Few things are guaranteed fo
increase all the time: Distance between
stars, Entropy in the visible universe, and

by John Doe | 29 comments

Anti-If: The missing
patterns

Around 10 years ago | encountered the
anti-if campaign and found it to be an
absurd concept. How on earth would you
make a useful program without using an

by John Doe | 29 comments

The Importance of Code
Reviews

| recently read this on Twitter - Sadly, it
seems code reviewing is a practice that's
foreign to many students, freelancers
and agencies. [Translated] Apparently,

by John Doe | 29 comments

The Languages,
Frameworks and Tools You
The Languages, Frameworks and Tools
You Should Learn in 2017 Martin
Angelov The software development
industry continues its relentless march

by John Doe | 29 comments

How I built an app with

500,000 users in 5 dayson a

How | built an app with 500,000 users in
5 days on a $100 server There seems to
be a general consensus in the world of
startups that you should build an MVP

by John Doe | 29 comments

Do You Suffer From
Deployment Anxiety? -
Whether you suffer from a diagnosed
anxiety disorder or not, many of us who
are responsible for deployments become
uneasy when deploying code to

by John Doe | 29 comments

political | sports | tech

| business | entertainment

Copyright © 2018 The News Reporter. All rights reserved | Design by ASTREAS

Movies | culture |

Figure 6.65: Ul interface of the recommended news

6.7 Summary

Books

Seniority

People use different words to classify
Engineer skill, some companies give you
more senior role just based on a number
of years you have been working there,

by John Doe | 29 comments

Advanced Android Espresso
Espresso is a very powerful Ul testing
framework for Android. Chiu-Ki Chan
describes several techniques to make
the most of it. running through:

by John Doe | 29 comments

| classifieds | other

This chapter provides the overview of the implementation of the project. We have stated

how the project was built step by step and approaches we followed to accomplish them.

The module wise implementations are further described in this chapter.

106

Chapter 7

7. Evaluation

7.1 Introduction

This chapter focusses on the results obtained through implementation of the algorithms
we have proposed. Results obtained through experimentation is summarized and
analyzed through discussions. These discussions are used for deriving conclusion on

the algorithms and approaches we have used for achieving the aim and objectives.

7.2 Evaluation of classification module

To evaluate classification module Confusion matrix, Precision, Recall, and F; measure

are used. Those evaluation matrices evaluate the accuracy of a classification.
7.2.1 Data Set

Used BBC news dataset. It consists 2225 e-news articles from the BBC e-news website
corresponding to e-news in five main areas from 2004 to 2005. Class labels are political,
business, Entertainment, technology and sports. There are 510 business news, 386
entertainment news, 414 political news, 511 sports news and 401 technological news

in the dataset.

7.2.2 Evaluation matrices

A confusion matrix CM is such that CM p 4 is equivalent to the number of observations
recognized as to be in group p but predicted to be in group ¢g. Confusion matrix for each
individual classifiers are created and then the ensemble classifier confusion matrix is

created. A true positive values are increased in ensemble classifier.

107

Classified as-> Business Entertainment Political Sport Tech

Class Label

Business 110 1 3 0 1
Entertainment 0 71 1 0 0
Political 2 0 73 0 1
Sport 1 0 0 101 0
Tech 1 1 0 0 78

Table 7.1: Confusion Matrix of Support Vector Machine

In testing data 115 news items are originally labeled as business news, 110 of which
were classified as business, 1 as entertainment, 3 as political and 1 as tech. 72 news
items are originally labeled as entertainment, 71 of which classified as entertainment
and 1 as political news.76 news items are originally labeled as political news, 73 of
which were classified as political, 2 as business and 1 as tech. 102 items are originally
labeled as sports, 101 of which were classified as sport news and 1 as business news.
80 news items are originally classified as tech. 78 of which were classified as tech, 1 as

business and 1 as entertainment.

Classified as-> Business Entertainment Political Sport Tech

Class Label

Business 113 0 2 0 0
Entertainment 2 67 2 1 0
Political 3 0 72 1 0
Sport 1 0 0 101 0
Tech 2 1 0 1 76

Table 7.2: Confusion Matrix of Random Forest Algorithm

108

Classified as->

Class Label

Business
Entertainment
Political

Sport

Tech

Business Entertainment Political Sport

110 1 3 0
0 66 4 0
1 0 74 0
1 0 0 101
0 1 0 0

Table 7.3: Confusion Matrix of Multinomial Naive Bayes

Classified as->

Class Label

Business
Entertainment
Political

Sport

Tech

Business Entertainment Political = Sport

111 0 3 0
0 71 1 0
1 0 74 0
1 0 0 101
0 1 0 0

Table 7.4: Confusion Matrix of the Ensemble Classifier

Tech

79

Tech

79

To select the best kernel function for this domain, calculated the accuracy of the system

with different kernel functions. Blow table shows the results of different kernel

function. Kernel functions are applied for non-linearly separable domains to map into

higher dimension spaces which can easily separable.

SVM Classifiers with different Kernel functions

SVC with linear kernel

LinearSVC

109

Accuracy

0.973033

0.973033

SVC with RBF kernel 0.968539

SGDC 0.964044

Table 7.5: SVM with different Kernel Functions

Calculated the accuracy over different classifiers to select the best three classifiers

to create ensemble classifier. Below table shows the results.

Classifier Accuracy
RandomForestClassifier 0.96404
MultinomialNB 0.95751
GussianNB 0.92132
BernoulliNB 0.94831
Support Vector Machine 0.97303
Ensemble classifier(Hard Voting) 0.97528

(RandomForestClassifier, MultinomialNB, Support Vector Machine)
Ensemble classifier(Soft Voting) 0.97977
(RandomForestClassifier, MultinomialNB, Support Vector Machine)

Table 7.6: Accuracy of classifiers

RandomForestClassifier, MultinomialNB, and Support Vector Machine gives higher
accuracy. So we used those three classifiers to create ensemble classifier. Majority rule
voting is used in hard Voting Classifier. The soft voting method predicts the e-news
class label based on the sum of the predicted probabilities of individual classifies. The
soft voting method gives more accurate result than hard voting method. So we used the

soft voting method to implement our system.

To evaluate individual classifiers and ensemble classifier precision, recalled and F1

score are used.

Ture Positive

Precision = — T
True Positive + False Postitive

110

Business

Entertainment

Political

Sport

Tech

Ture Positive

Recall = True Positive + False Negative
F1 Score — 2 Precision * Recall
Precision + Recall
SVM RF MNB

Precision 0.9565 0.9826 0.9565
Recall 0.9565 0.9338 0.9821
F1Score 0.9565 0.9575 0.9691
Precision 0.9861 0.9178 0.9295
Recall 0.9861 0.9852 0.9705
F1Score 0.9861 0.9503 0.9495
Precision 0.9605 0.9473 0.9736
Recall 0.9605 0.9473 0.9135
F1Score 0.9605 0.9473 0.9425
Precision 0.9901 0.9901 0.9901
Recall 0.9901 0.9711 1.0000
F1Score 0.9901 0.9805 0.9950
Precision 0.9750 0.9500 0.9500
Recall 0.9750 1.0000 0.9634
F1Score 0.9750 0.9743 0.9566

Table 7.7: Precision, Recall, F1 values for each classifiers

Ensemble

0.9652
0.9823
0.9736
0.9861
0.9861
0.9861
0.9736
0.9487

0.9609
0.9901

1.0000

0.9950
0.9875

0.9753
0.9813

The final results show higher average recall, precision and fi results for ensemble

classier over other three individual classifiers.

7.3 Evaluation of the aggregation module

111

Evaluation of the quality of clusters is most important in cluster analysis. The
evaluation results shows how good the clusters, produced by the clustering algorithm.
The evaluation of the clusters has based on F-measure in this study. F-measure is an
external quality measure technique which is required external informations about the
data and it is used to measure the quality of the clusters for testing data. F-measure is
calculated by considering the precision (P) and recall(R) of test dataset. Precision is
calculated as the number of correct positive results divided by the number of all positive
results of the clusters found by the algorithm. The number of correct positive results
divided by the number of all the samples which are identified as positive samples by
using an external knowledge is taken as recall. F-measure is the harmonic average of
the recall and precision. F-measure gives value 1 for perfect recall and precision as the
best value and value 0 as worst value. If a cluster is having high quality F-measure gives

a higher value.

2.P.R
P+R

F — measure =

Where,

True positive

 True positive + False negative

True positive

 True positive + False positive

Where,

True Positive: Similar documents which are in same cluster (Correctly Identified)
False Positive: Dissimilar documents which are in same cluster (Incorrectly Identified)

True Negative: Dissimilar documents which are in different clusters (Correctly

Rejected)

False Negative: Similar documents which are in different clusters (Incorrectly

Rejected)

7.3.1 Data set

112

Testing dataset of news aggregation module contain 259 manually collected news

articles which belong to 58 topics. The data set contain 10 outliers.

7.3.2 Evaluation results for different feature models

TF-IDF vector space model DBSCAN 0.969 0.993

Feature Model Clustering Precision Recall F-Measure
Algorithm
LDA DBSCAN 0.397 0.880 0.548
(No. of Topics = 58)
Doc2vec DBSCAN 0.222 0.595 0.324
(window size = 10)
(No. of hidden nodes = 300)
0.981

Table 7.8: Evaluation of different feature models for clustering

TF-1df feature model has recorded higher quality of clustering than LDA model and

Doc2vec model.

7.3.3 Evaluation results for different clustering algorithms

Clustering Precision Recall F-Measure Outlier
Identification
Algorithm
K-Means 0.981 0.976 0.979 2of 10
(k=58) (correctly - 2)
(wrongly - 0)
Affinity 0.980 0.995 0.987 0of 10

113

Propagation (correctly - 0)
(wrongly - 0)
DBSCAN 0.969 0.993 0.981 10 of 10

(correctly - 10)

(wrongly - 3)

Table 7.9: Evaluation results of different clustering algorithms

DBSCAN clustering algorithm has recorded higher quality of clustering than other two

clustering algorithm.

7.4 Evaluation of the summarization module

Some kind of a matrix is needed to evaluate the summaries generated by the system. So
that we can get an idea about the performances, accuracy rates of the summarizer

module and thereby we can further research on how to improve the performances.

7.4.1 Evaluation matrix

For evaluating the system generated summaries, the ROUGE automatic summary
evaluation metric was used. ROUGE is a recall based metric for fixed-length summaries
which is based on n-gram co-occurrence. It reports separate scores for 1, 2, 3, and 4-
gram, and also for longest common subsequence co-occurrences. Among these
different scores, unigram-based ROUGE score (ROUGE-1) has been shown to agree
with human judgments the most. Therefore the ROUGE-1 (unigram-based) metrics was
used to evaluate the experiment results. Here a human produced model summary was
used to evaluate the system generated summaries for any given e-news cluster. Then
the ROUGE scores were computed for the system generated summaries of each cluster
against the human summary. ROUGE-1 metric refers to the overlap of unigrams
between the system summary and reference summary by computing the recall and
precision values. The recall, precision and f-measure values can be calculated by using

the formula;

114

no. of overlapping words
Recall =

total no. of words in reference summary

no. of overlapping words

Precision = ,
total no. of words in system summary

2(Precision * Recall)

f —measure = (Precision + Recall)

7.4.2 Evaluation of the individual sentence scoring approaches

In the initial testing phase the system summaries were tested against the human
summaries for the different approaches separately. So the evaluation was performed for
the graph based approach and the feature based approach separately. The table 7.10
shows the average recall, precision and f-measure values taken for these individual

approaches separately.

Method Recall Precision f-measure
Graph based approach — TextRank 66% 72% 69%
Feature based approach 70% 76% 73%

Table 7.10: ROUGE-1 evaluation results for individual sentence scoring approaches

7.4.3 Evaluation of the similarity measures

A hybrid model was designed for sentence scoring which uses both the graph based and
feature based methods. In the TextRank algorithm used as the graph based method,
different similarity measures were needed to be evaluated in order to find out the
similarity measure which gives the best results. Therefore for the evaluation purposes
a sample set of individual documents were selected and then evaluated against each
similarity measure using recall and precision values. Table 7.11 shows the results
gained for each similarity measure separately and the average recall and precision

values gained for each measure.

Euclidean Bow Jaccard Cosine

115

Document | Recall Precision Recall Precision Recall Precision | Recall Precision
Id
Doc 1 0.199 0.174 0.254 0.150 0.291 0.200 0.810 0.542
Doc 2 0.467 0.382 0.382 0.251 0.381 0.260 0.441 0.422
Doc 3 0.321 0.321 0.500 0.429 0.692 0.857 0.667 0.571
Doc 4 0.110 0.067 0.256 0.137 0.256 0.188 0.219 0.157
Doc 5 0.653 0.500 0.714 0.588 0.663 0.528 0.714 0.593
Doc 6 0.797 0.938 1.000 1.000 1.000 1.000 1.000 1.000
Doc 7 0.752 0.675 0.829 0.696 0.828 0.696 1.000 1.000
Doc § 0.286 0.213 0.286 0.220 0.626 0.508 0.472 0.500
Doc 9 0.261 0.195 0.207 0.218 0.413 0.362 0.413 0.392
Doc 10 0.314 0.226 0.506 0.405 0.517 0.331 0.202 0.180
Average 0.416 0.370 0.493 0.409 0.567 0.493 0.594 0.536

Table 7.11: Evaluation of similarity measures for the TextRank algorithm

So the results showed higher recall and precision values for the summaries which have

higher overlaps between system summaries and reference summaries. Based on the

average recall and precision values obtained the cosine similarity measure was used

which gained the highest accuracy when implementing the textRank algorithm.

7.4.4 Evaluation of the normalization schemes

The feature based approach was evaluated when the features are not normalized, when

the feature values are normalized by sentence length and when the feature values are

normalized by the sigmoid function. Table 7.12 shows the results gained for each

normalization scheme for the sample set of documents in the feature based approach.

So based on the results obtained it was achieved the conclusion that the normalization

116

by the sigmoid function gives the highest accuracy rate when compared with no
normalization and normalization by sentence length and hence normalization by

sigmoid function was used for implementation.

Document No normalization Normalization by Normalization by
Id sentence length sigmoid function
Recall Precision Recall Precision Recall Precision

Docl 0.93 0.61 0.81 0.52 0.98 0.61
Doc 2 0.441 0.419 0.533 0.558 0.508 0.444
Doc 3 0.679 0.576 0.679 0.624 0.513 0.555
Doc 4 0.219 0.159 0.402 0.305 0.768 0.563
Doc 5 0.724 0.596 0.948 0.744 0.643 0.525
Doc 6 1.000 1.000 1.000 1.000 1.000 1.000
Doc 7 1.000 1.000 1.000 1.000 1.000 1.000
Doc 8 0.505 0.414 0.505 0.442 0.747 0.739
Doc 9 0.424 0.390 0.695 0.587 0.543 0.617
Doc 10 0.404 0.360 0.393 0.388 0.876 0.672
Average 0.633 0.553 0.697 0.617 0.759 0.673

Table 7.12: Evaluation of normalization schemes in the feature based approach

7.4.5 Evaluation of the system generated summaries

The system was built by combing the feature based method and the graph based method
and finally the system generated summaries were evaluated using the ROUGE-1
matrix. The results gained for the final summaries generated by the system by

considering sample set of e-news clusters are shown in table 7.13.

117

Cluster Id Recall Precision
Cluster 1 0.708 0.675
Cluster 2 0.846 0.720
Cluster 3 0.949 0.925
Cluster 4 0.805 0.617
Cluster 5 0.816 0.762
Cluster 6 0.819 0.761
Cluster 7 0.880 1.000
Cluster 8 0.667 0.600
Cluster 9 0.772 0.739

Cluster 10 0.865 0.719
Average 0.813 0.752

Table 7.13: Evaluation of the final system generated summaries

Average f-measure = 0.781
The final results show high average recall, precision and f-measure values for the
system generated summaries which use a hybrid approach than the summaries

generated individually using one single approach. The evaluation results proved an

acceptable accuracy rate for the summaries generated by the system.

7.5 Evaluation of the recommendation module

118

Evaluation is important for machine learning projects because it allows comparing
objectively different algorithms and hyper parameter choices for models. One key
aspect of evaluation is to ensure that the trained model generalizes for data it was not
trained on, using Cross-validation techniques. Here we are using a simple cross-
validation approach named holdout, in which a random data sample (20% in this case)
are kept aside in the training process, and exclusively used for the evaluation. All

evaluation metrics reported here are computed using the test set.

7.5.1 Data set

The CI&T DeskDrop dataset was used to evaluate the proposed methodology. The data
set can be found at the kaggle site (https://www.kaggle.com/gspmoreira/recommender-
systems-in-python-101/data). The dataset comprises about 73k logged user’s
interactions on more than 3k public articles. It contains features like item attributes;
contextual information like date and time of user visits and geo location; logged users;

rich implicit feedback in terms of comments, likes and views etc.

7.5.2 Evaluation matrix

In recommender systems, there is a set metrics commonly used for evaluation purposes.
We choose to work with Top-N accuracy metrics, which evaluates the accuracy of the
top recommendations provided to a user, comparing to the items the user has interacted
in the test set. This evaluation method works as follows:
e For each user
= For each item the user has interacted in test set
o Sample 100 other items the user has never interacted. Here we
naively assume those non-interacted items are not relevant to the
user, which might not be true, as the user may simply not be
aware of those not interacted items. But it was considered as an
assumption.
o Ask the recommender model to produce a ranked list
recommended items, from a set composed one interacted item

and the 100 non-interacted (non-relevant) items.

119

o Compute the Top-N accuracy metrics for this user and interacted
item from the recommendations ranked list.

e Aggregate the global Top-N accuracy metrics

The Top-N accuracy, metric chosen was Recall@N which evaluates whether the
interacted item is among the top N items (hit) in the ranked list of 101 recommendations

for a user. The evaluation results are given in the following table comparing each of the

methods.
Model Name recall@10 recall@5s
Popularity 0.372923 0.241754
Collaboratve Filtering 0.468167 0.334058
Content-Based 0.524163 0.414600

Hybrid 0.537970 0.433777

Table 7.14: Evaluation results of different recommendation methods

0538

modelName
= Popularity
mmm Collaborative Filtering
mmm Content-Based
mm Hybrid
0434

0524

051

04

03

02

01

00 -

recall@l0
recall@s

Figure 7.1: Performance of different recommendation methods

120

7.7 Summary

Results and discussions discussed in this chapter summarizes to drive the project
towards deriving conclusions. Results have been discussed in line with the objectives
to be achieved in each module. Accuracy and performance of the algorithms and

approaches have been discussed with respect to the objectives of each module.

Chapter 8

8. Conclusion & Further work

8.1 Introduction

121

This chapter describes in detail about the various approaches we have identified to solve
the problems in individual modules. Furthermore this chapter compares between the
approaches and discusses why we have selected a particular approach to solve the

problem.

8.2 Achievement of Objectives

As said in the list of objectives, we have built a personalized e-news recommendation
system. The system mainly consists of classification, aggregation, summarization and
recommendation components as described in the earlier chapters. The objective of
building a classifier was achieved by developing an ensemble classifier. Then the
objective of building an e-news aggregation component was achieved by using the
DBSCAN algorithm which proved high performance when compared with other
aggregation algorithms. As the existing systems like Google and Yahoo do not provide
summarized views of news content, that feature was also included in our system. So
that the objective of building an intelligent summarizer was also achieved which uses
several tools, techniques and algorithms for each design phase of the summarizer
component. Since the prevailing recommendation systems provide only the content
based recommendations which recommends news items that belong to the same
category and do not provide personalized news recommendations, a personalized e-
news recommendation system was developed. Therefore, the objective of building a
recommender module was achieved by developing a hybrid recommender model using
content based filtering, collaborative filtering and popularity model. The last objective
was to evaluate the system in a practical environment with real data. So we evaluated
the system for the real extracted e-news articles from web sites and evaluated how the

system classifies, aggregates, summarizes and recommends e-news articles to the users.

8.3 Problems encountered

With the vast amount of e-news content extracted, handling such an enormous amount
of data was very difficult. So we had to define what are the e-news sites we are going
to extract the e-news content. We also needed to define how many e-news articles we

are going to extract per e-news site beforehand. Since there were dependencies between

122

the modules, we faced many problems in integrating these modules. Since data are
passed between the modules, it was problematic to retrieve those data when the output
formats of those data are different like one module outputs a JSON file , another module
outputs a text file or a csv file. So we had to follow a single output format for each

module.

8.4 E-news extraction and classification module

E-news extraction module uses both RSS feeds and URLs. At the beginning of the
process user provides root URLs or RSS feeds into the system. RSS feeds are the first
priority because it gives more consistent data than URLs crawling. In the extraction
process, only extract e-news articles by excluding all other irrelevant contents like
advertisements, user comments, etc. That is one of the difficult tasks in the extraction
module. Newspaper library was used with enhanced features for extraction. Checking
published data were added as an enhanced feature. Checking publish data gives more
consistent data by removing unnecessary data. Feedpaser is used to read RSS feeds.
Then by downloading and parsing e-news article content is extracted.

Using RSS feeds or by URL crawling new e-news articles URLs will be gathered. These
new URLs are stored in frontier until they scarped. After extraction e-news articles then
these articles are send for the pre-processing stage. Pre-processed data will be given
better results in classification module. Then ensemble classifier is designed and
developed for classification of e-news articles. The most difficult task is to select the
best individual classifiers and select the better ensemble method which gives more
accurate results in this domain. For that individual classifiers were developed and did
an evaluation on each classifier to get accuracy. MultinomialNB, SVM and Random
forest supervised learning algorithm were selected. These algorithms show higher
accuracy than other individual classifiers. Designed and developed method to eliminate
other news category. Decided threshold value by evaluating different e-news articles.
To ensemble three classifiers used average values of each individual classifiers. It gives

more accurate predictions than majority voting method.

8.5 E-news aggregation module

123

Throughout the research carried out on e-news aggregation these are the conclusions
we arrived at. If the number of news article is not a large number Tf-idf feature model
is better than other feature models for feature extraction. But when we have very large
number of news articles in the data set, extracting tf-idf features is consume lot of
computational power because of high dimensionality. If the number of e-news topics is
known and the number of news articles is very large LDA model is good because it has
relatively very low dimensionality than tf-idf feature model. When we have very

lengthy news articles doc2vec feature model is good.

If the number of clusters is not known before performing the clustering algorithm and
if the data set contain outliers DBSCAN algorithm is better than k-means and affinity
propagation algorithms. But if the number of clusters is not known before performing
the clustering and if the data set does not contain outliers affinity propagation clustering
algorithm is better than other two clustering algorithms. If the number of clusters is a
known value before performing the clustering algorithm and if the number of news
articles is very large k-means clustering algorithm is good because it is the fastest

clustering algorithm among the mentioned clustering algorithms.

8.6 E-news summarization module

The most challenging task in generating the summary for e-news clusters is to identify
the most significant sentences from the original set of documents. In order to identify
the most important sentences we needed a mechanism for assigning each sentence an
importance score. So we used a hybrid model for sentence scoring using a graph based
method and a feature based method combined together. TextRank algorithm was used
as the graph based method which generates sentence similarity graphs considering
similarity between sentences measured by using the cosine similarity. Thereby we
scored the sentences in the graph using the PageRank algorithm. Also we extracted a
set of features from sentences like sentence position, sentence length, title words etc. in
the feature based method and then assigned a weighted average score for each sentence
in the original set of documents based on the presence of these features. Throughout
this project we researched for these different methods for sentence scoring and
compared with each other for their accuracies. Finally we came up with a hybrid

approach for sentence scoring combining both these methods together since it gave us

124

better results rather than using them individually. Then we identified that we need to
remove the redundant sentences from the final summary which was performed by
considering three perspectives of sentence similarities namely the syntactic similarity,
lexical similarity and semantic similarity. Lexical similarities were found by using
jaccard similarity and the syntactic similarities were measured by modelling 2-gram
models and then computing the dice coefficient. The semantic similarities were found
by using WordNet dictionary and word2vec model. Then the final summary sentences
are arranged in the proper coherent order by sequence matching and form the final
summary. After taking the recall, precision and f-measure values for the system
generated final summaries we got better results which led us to choose this approach to

solve the problem

8.7 E-news recommendation module

E-news recommender component was designed and developed as a hybrid e-news
recommender system. In order to have personalized e-news recommendations which
recommend favored e-news articles to the users, the system uses a temporal preference
model of the user. For user modeling, user profiles are built by extracting the user
interests. The priority of each interest is inferred as the user preference. Content based
filtering was also used to build the hybrid recommender model. It recommends e-news
items about the same category where the users have previously searched for. The
Location aware personalization was also used to recommend e-news articles to the users
based on their current location. The CI&T DeskDrop dataset from the source
(https://www .kaggle.com/gspmoreira/recommender-systems-in-python-101/data) was
used to evaluate the proposed methodology. Experimental results proved that the

proposed methodology has improved the accuracy of e-news recommendation.

8.8 Further work

There are some enhancements can be performed to improve the developed system. The
number of classes or the groups for classification can be further extended. An ensemble

clustering algorithm can also be applied in order to have high performance. An

125

improved algorithm for sentence ordering for the summary generation can be

developed.

8.9 Summary

This chapter briefs about the level of objectives that we have achieved and also
proposes the enhancements that can be made to the project to develop it further for the
benefit of the research community and also the users of this application. Almost all the

objectives stated have been achieved to an acceptable extent.

References

[1] A. Hassaine, Z. Safi, J. Otaibi, and A. Jaoua, “Text Categorization Using
Weighted Hyper Rectangular Keyword Extraction,” 2017 IEEE/ACS 14th

126

International Conference on Computer Systems and Applications (AICCSA),
2017.

[2] A. Verma and A. K. Gahier, “Topic Modeling of E-News in Punjabi,” Indian
Journal of Science and Technology, vol. 8, no. 27, Oct. 2015.

[3] D. M. Blei, A. Y. Ng, and M. 1. Jordan, “Latent Dirichlet Allocation”, Journal
of Machine Learning Research 3, pp. 9931022, 2003.

[4] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. “Efficient
estimation of word Representation in vector pace.” ICLR Workshop, 2013.

[5] T. B. Mirani and S. Sasi, “Two-level text summarization from online news
sources with sentiment analysis,” 2017 International Conference on Networks
& Advances in Computational Technologies (NetACT), 2017.

[6] Y. K. Meena, A. Jain, and D. Gopalani, “Survey on Graph and Cluster Based
approaches in Multi-document Text Summarization,” International Conference
on Recent Advances and Innovations in Engineering (ICRAIE-2014), 2014.

[7] G. S. Sadhasivam, K. Saranya, and E. Praveen, ‘“Personalisation of News
Recommendation Using Genetic Algorithm,” 2014 3rd International
Conference on Eco-friendly Computing and Communication Systems, 2014.

[8] J. Sun, J. Ma, X. Liu, Z. Liu, G. Wang, H. Jiang, and T. Silva, “A Novel
Approach for Personalized Article Recommendation in Online Scientific
Communities,” 2013 46th Hawaii International Conference on System
Sciences, 2013.

[9] S. Gupta, G. Kaiser, D. Neistadt, and P. Grimm, “DOM-based Content
Extraction of HTML Documents,” Jan. 2005.

[10] S. Mukherjee, G. Yang, and I. V. Ramakrishnan, “Automatic Annotation of
Content-Rich HTML Documents: Structural and Semantic Analysis,” Lecture
Notes in Computer Science The Semantic Web - ISWC 2003, pp. 533-549, 2003.

[11] S. Gupta, G. Kaiser, D. Neistadt, and P. Grimm, “DOM-based Content
Extraction of HTML Documents,” Jan. 2005.

[12] S.-H. Lin and J.-M. Ho, “Discovering informative content blocks from Web
documents,” Proceedings of the eighth ACM SIGKDD international conference
on Knowledge discovery and data mining - KDD 02, 2002.

[13] X. Yin and W. S. Lee, “Using link analysis to improve layout on mobile
devices,” Proceedings of the 13th conference on World Wide Web - WWW 04,
2004.

127

[14] Y.-F. Tseng and H.-Y. Kao, “The Mining and Extraction of Primary
Informative Blocks and Data Objects from Systematic Web Pages,” 2006
IEEE/WIC/ACM International Conference on Web Intelligence (WI 2006 Main
Conference Proceedings)(W106), 2006.

[15]D. K. Evans, J. L. Klavans, and K. R. Mckeown, “Columbia
Newsblaster,” Demonstration Papers at HLT-NAACL 2004 on XX - HLT-
NAACL 04, 2004.

[16] C. H. Lee, M.-Y. Kan, and S. Lai, “Stylistic and lexical co-training for web
block classification,” Proceedings of the 6th annual ACM international
workshop on Web information and data management - WIDM 04, 2004.

[17]J. Gibson, B. Wellner, and S. Lubar, “Adaptive Web-page Content
Identification,” Jan. 2007.

[18] A. H. F. Laender, B. A. Ribeiro-Neto, A. S. D. Silva, and J. S. Teixeira, “A
brief survey of web data extraction tools,” ACM SIGMOD Record, vol. 31, no.
2, p. 84, Jan. 2002.

[19] I. Muslea, S. Minton, and C. Knoblock, “A hierarchical approach to wrapper
induction,” Proceedings of the third annual conference on Autonomous Agents
- AGENTS 99, 1999.

[20] N. Kushmerick, “Wrapper induction: Efficiency and
expressiveness,” Artificial Intelligence, vol. 118, no. 1-2, pp. 1568, 2000.
[21] M. Balakumar and V. Vaidehi, “Ontology based classification and
categorization of email,” 2008 International Conference on Signal Processing,

Communications and Networking, 2008.

[22] R. S. Michalski, J. G. Carbonell, T. M. Mitchell, Machine Learning: An
Artificial Intelligence Approach, New York, NY, USA:Springer, 2013.

[23] B. Baharudin, L. H. Lee, and K. Khan, “A Review of Machine Learning
Algorithms for Text-Documents Classification,” Journal of Advances in
Information Technology, vol. 1, no. 1, Jan. 2010.

[24] L. Dilrukshi, K. D. Zoysa, and A. Caldera, “Twitter news classification using
SVM,” 2013 8th International Conference on Computer Science & Education,
2013.

[25] Ramon Aragiiés Peleato, Jean-Cédric Chappelier and Martin Rajman ," Using

Information Extraction to Classify Newspapers Advertisements, 2000.

128

[26] R. Song, H. Liu, J.-R. Wen, and W.-Y. Ma, “Learning important models for
web page blocks based on layout and content analysis,” ACM SIGKDD
Explorations Newsletter, vol. 6, no. 2, pp. 14-23, Jan. 2004.

[27] M. 1. Rana, S. Khalid, and M. U. Akbar, “News classification based on their
headlines: A review,” 17th IEEE International Multi Topic Conference 2014,
2014.

[28] Distributed Representations of phrases and their compositionality.” In
Advances on Neural Information Processing Systems, 2013c.

[29] Quoc Le,Tomas Mikolov. “Distributed Representations of Sentences and
Documents. “ arXiv:1405.4053v2 [cs.CL]

[30] R. K. Mishra, K. Saini, and S. Bagri, “Text document clustering on the basis
of inter passage approach by using K-means,” International Conference on
Computing, Communication & Automation, 2015.

[31] L. Qi, Y. Huiping, and W. Min, “Active semi-supervised affinity propagation
clustering algorithm based on pair-wise constraints,” Proceeding of the 11th
World Congress on Intelligent Control and Automation, 2014.

[32] L. H. Patil and M. Atique, “A novel approach for feature selection method TF-
IDF in document clustering,” 2013 3rd IEEE International Advance Computing
Conference (IACC), 2013.

[33] S. Sharma, A. K. Sharma, and D. Soni, “Enhancing DBSCAN algorithm for
data mining,” 2017 International Conference on Energy, Communication, Data
Analytics and Soft Computing (ICECDS), 2017.

[34] R. Alguliyev, R. Aliguliyev, and N. Isazade, “A sentence selection model and
HLO algorithm for extractive text summarization,” 2016 [EEE 10th
International Conference on Application of Information and Communication
Technologies (AICT), 2016.

[35]J. L. Neto, A. A. Freitas, and C. A. A. Kaestner, “Automatic Text
Summarization Using a Machine Learning Approach,” Advances in Artificial
Intelligence Lecture Notes in Computer Science, pp. 205-215, 2002.

[36] V. Gupta and G. S. Lehal, “A Survey of Text Summarization Extractive
Techniques,” Journal of Emerging Technologies in Web Intelligence, vol. 2, no.
3,2010.

[37] H. Christian, M. P. Agus, and D. Suhartono, “Single Document Automatic

Text Summarization using Term Frequency-Inverse Document Frequency (TF-

129

IDF),” ComTech: Computer, Mathematics and Engineering Applications, vol.
7, no. 4, p. 285, 2016.

[38] D. Hingu, D. Shah, and S. S. Udmale, “Automatic text summarization of
Wikipedia articles,” 2015 International Conference on Communication,
Information & Computing Technology (ICCICT), 2015.

[39] S. Akter, A. S. Asa, M. P. Uddin, M. D. Hossain, S. K. Roy, and M. 1. Afjal,
“An extractive text summarization technique for Bengali document(s) using K-
means clustering algorithm,” 2017 IEEE International Conference on Imaging,
Vision & Pattern Recognition (iclVPR), 2017.

[40] A. Khan, N. Salim, and H. Farman, “Clustered genetic semantic graph
approach for multi-document abstractive summarization,” 2016 International
Conference on Intelligent Systems Engineering (ICISE), 2016.

[41] L. F. Moawad and M. Aref, “Semantic graph reduction approach for abstractive
Text Summarization,” 2012 Seventh International Conference on Computer
Engineering & Systems (ICCES), 2012.

[42] B. Sarwar, G. Karypis, J. Konstan, and J. Riedl, “Application of
Dimensionality Reduction in Recommender System - A Case Study,” 2000.
[43] S. Jiang and W. Hong, “A vertical news recommendation system: CCNS—An
example from Chinese campus news reading system,” 2014 9th International

Conference on Computer Science & Education, 2014.

[44] Y. Wang and W. Shang, “Personalized news recommendation based on
consumers click behavior,” 2015 12th International Conference on Fuzzy
Systems and Knowledge Discovery (FSKD), 2015.

[45] N. Jonnalagedda and S. Gauch, “Personalized News Recommendation Using
Twitter,” 2013 IEEE/WIC/ACM International Joint Conferences on Web
Intelligence (WI) and Intelligent Agent Technologies (IAT), 2013.

[46] S. Liu, Y. Dong, and J. Chai, “Research of personalized news recommendation
system based on hybrid collaborative filtering algorithm,” 2016 2nd IEEE
International Conference on Computer and Communications (ICCC), 2016.

[47]N. C. Hoan and V. T. Nguyen, “Advance Missing Data Processing for
Collaborative Filtering,” Computational Collective Intelligence. Technologies
and Applications Lecture Notes in Computer Science, pp. 355-364, 2012.

[48] S. R. Pandit and M. Potey, “A Query Specific Graph Based Approach to Multi-

document Text Summarization: Simultaneous Cluster and Sentence

130

Ranking,” 2013 International Conference on Machine Intelligence and
Research Advancement, 2013.

[49] R. Mihalcea, “Graph-based ranking algorithms for sentence extraction, applied
to text summarization,” Proceedings of the ACL 2004 on Interactive poster and
demonstration sessions -, 2004.

[50] A. R. Pal and D. Saha, “An approach to automatic text summarization using
WordNet,” 2014 IEEE International Advance Computing Conference (IACC),
2014.

[51]P. P. Tardan, A. Erwin, K. I. Eng, and W. Muliady, “Automatic text
summarization based on semantic analysis approach for documents in
Indonesian language,” 2013 International Conference on Information

Technology and Electrical Engineering (ICITEE), 2013.

Appendix A

Individual’s Contribution to the Project

Name of Student: E.V.K. Alwis (134006J)

The part [was assigned was the e-news summarization component. I had only a limited

knowledge about natural language processing stuff gathered through the Natural

131

Language Processing course module I have followed. Therefore, it was a challenging
task for me to get up to the level. So as the first step I went through many research
papers and notes on finding a way to initiate the component. I followed a number of
research papers and online resources available for text summarization and studied about
various approaches that the researchers have already taken for text summarization. I
also studied about the limitations prevailing in the existing systems in order to improve

the summarization results.

The foremost task in text summarization was to identify the most significant sentences
from the original documents. So I studied the available approaches and algorithms for
sentence scoring in detail and evaluated each of the individual approach against each
other. Then I came up with the conclusion that using a hybrid model combining several
sentence scoring algorithms together is much more powerful than using a single
approach. Therefore I chose the two approaches; graph based approach and the feature
based approach which gave the highest accuracy rates to build the hybrid model.
Because of some problems encountered here I had to select a proper normalization

scheme after trying out various normalization methods.

The next critical part I had was to find a mechanism to remove redundant sentences
from the generated summary. So I first studied about the types of redundancies that can
present between sentences and identified three types of redundancies namely; the
lexical, syntactic and semantic redundancies. So I went through numerous research
papers and other resources to study about various approaches for the removal of these
three redundancies. Further I studied about how the redundancies are removed in each
of the algorithms. From the knowledge I got through the reading, I implemented a
solution for lexical redundancy removal using jaccard similarity, syntactic redundancy
removal using 2-gram models and semantic redundancy removal using both wordNet
and word2vec. Here the trickiest part was to define a threshold value which considers
two sentences are similar. So, I had to test sentence similarities for a large number of

sentence pairs in order to have an accurate value as the threshold value.

Another challenging task I had was to find an accurate mechanism for arranging the
order of the summary sentences. It was one of the hardest tasks for multi document text

summarization since sentences are extracted from multiple documents. I studied about

132

various sentence ordering mechanisms for multi document text summarization and

finally came up with a solution which uses sequence matching.

The next critical part I had was to test the performance of the summarization
component. So I had to create a set of sample summaries manually for the e-news
clusters. Then I evaluated the performance of the system summaries against the sample

summaries where the evaluation results showed an acceptable accuracy rate.

Name of Student: M.W.L. Asanga (134012A)

First, I manually collected 259 e-news articles from different e-news sites such as
in.reuters.com, broadwayworld.com, dailyfinance.com, globalpost.com, cnn.com, etc.

and manually grouped them into 58 topics.

For extracting of features from news articles, I implemented three feature models such
as LDA model, Doc2vec model and Tf-idf vector model. After implementing these
feature models clustering was performed by using k-means clustering algorithm. Then
I compared the cluster quality against above feature models using precision, recall and
F-measure. Tf-idf feature model had recorded higher cluster quality than LDA and
Doc2vec model and therefore Tf-idf feature model was selected for carrying out further

developments.

For the clustering task, I implemented three clustering algorithms such as K-means
clustering, Affinity propagation and Density based spatial clustering of application with
noise (DBSCAN) algorithm. First I clustered the data set using k-means clustering
algorithm. But it was required to specify the number of clusters before running the
clustering algorithm. The other problem was, the final result of k-means algorithm was
directly dependent on the initialization of centroids. The cluster quality also varied on
different initializations of centroids. Next I clustered the data set using affinity
propagation clustering algorithm. Unlike k-means, affinity propagation clustering
algorithm did not required to specify the number of clusters before running the
algorithm. But the problem with affinity propagation algorithm was it could not identify

the outliers in the data set.

133

A news article is called as outlier, if there is no any similar news articles for that news
article. Therefore I selected the DBSCAN algorithm for clustering. As same as the
affinity propagation, DBSCAN algorithm did not require to specify the number of
clusters before running the algorithm. The other advantages of DBSCAN was the

algorithm can identify the outliers of the data set.

Finally I implemented the complete e-news aggregation module using Tf-idf for feature
extraction and DBSCAN for clustering and integrated e-news aggregation module with

the entire system by using the django web development framework.

Name of Student: D.Dandeniya (134028D)

My overall contribution to this research is to develop the e-news extraction,
preprocessing and classification module. At the beginning of the project one of the
major challenges that I had to overcome was being familiar with the domain. Since I
didn’t have enough knowledge about the extraction, preprocessing and classification
algorithms, I had to do self-studies to be familiar with concepts, terms and techniques.

After acquiring some domain knowledge I developed the initial module design.

I read research articles and conference proceedings regarding e-news extraction
process. I had to study different crawling and scraping techniques In order to implement
the e-news extraction phase. I found out Newspaper library is the best method for
scarpering. I did research on that library and introduced enhanced feature to improve
the performance of the scraping process.

I needed an e-news article data set. Therefore, I searched for relevant datasets. In order
to increase the accuracy and the performance preprocessing module was designed and

developed.

With the guidance of our supervisor, I studied different machine learning algorithms
and implemented those algorithms. Such as Support Vector Machine, Multinomial
Naive Bayes, Bernoulli Naive Bayes, Gussian Naive Bayes and Random Forest
classifier. To find out accuracy considering kernel function I studied and implemented

SVC with linear kernel, LinearSVC, SVC with RBF kernel and SGDC classifier. With

134

the time being, I found out ensemble classifiers give more accurate results than
individual classifiers. Therefore, I studied about ensemble methods. I had to implement
two different algorithms and found out the optimal way to ensemble classifier is the
weighted average method. Used data set had five different class labels. But in the real
world, there are several other categories as well. Such as environment, health, crime
etc. To overcome this problem, defined the “Threshold” value to identify the other

category as well. By evaluation I calculated the Threshold value.

For demonstration purpose I developed a GUI for e-news extraction and classification
module separately. I designed a suitable architecture of the whole module to be

implemented.

Name of Student: L.G.A.N. Dissanayaka (134040G)

Personalize news recommendation system consists with main four components. News
extraction and classification, news aggregation, summarization and recommendation.
Out of these four components, my responsibility is to implement a proper method for

the news recommendation component.

I proposed hybrid news recommendation system consist of main four models.
Popularity model, content-based filtering model, collaborative filtering model and

location aware personalization model.

Popularity model ranks the news articles according to their event type score. If user

doesn’t have an account, this model helps to recommend news for the users.

Content-based filtering model calculates the similarity between news articles using

BoW (bag of words) and order the articles according to their TF-IDF score.

Collaborative filtering model consists of main two parts. User-based collaborative
filtering and item-based collaborative filtering. User-based collaborative filtering
means, finding the similarity between users and then do the recommendation. Item-
based collaborative filtering means, finding the similarity between news articles and
then do the recommendation. SVD (single value decomposition) is used as a Metrix

factorization technique for finding the similarities between users’ and as well as

135

similarities between news articles.

When generating user profiles and tracking user interactions location information also
stores in the database. Location aware personalization model gather all the news articles
which are related to the user’s location details. Location information’s are calculated

from user’s device IP address.

For the evaluation, I used one of cross validation technique called holdout to split the
data set as train data and test data. All the data before the current date take as train data
set and all the current date data take as test data set. To calculate the accuracy of above
models with our hybrid approach I used one of Top-N accuracy metric technique called
Recall@N. According to the results, it proves my approach produces high accuracy

than other techniques.

136

